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Abstract—This study focused on grading the quality of fruit 
in packaging plants. Fruit grading requires a body of 
standard data, which is difficult to achieve in practice. In 
most studies, relevant data are established solely by the 
researcher during the course of the research. We mounted 
cameras at fixed locations on machines to collect image and 
weight data, allowing farmers to create data feeds without 
disrupting their work. The system consists of a database of 
400 images that were manually labeled and trained on a deep 
learning network architecture. During the training process, 
70% of the images in the database were randomly selected 
for training, and the other 30% were used for verification to 
ensure that the training process did not over-learn, as over-
learning leads to a decrease in the recognition rate. After the 
position of the fruit in the image was detected through deep 
learning, the foreground and background were separated, 
the information about the fruit was extracted, and the total 
number of pixels was calculated. Automatic measurement 
was achieved by converting pixels to millimeters using 
standards in the environment. The detection rate of the 
proposed system was over 98%. Using 50 manual 
measurements of fruit size and automatic detection results 
for error analysis, the diameter error value was 15.3 mm and 
the length error value was 14.45 mm.  
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I. INTRODUCTION 

The quality of harvested fruit can be measured through 
destructive and non-destructive testing. Destructive testing 
measures levels of Total Soluble Solids (TSS), vitamin C, 
total sugars, and acidity. The most common non-
destructive tests are fruit size and weight. In fruit 
packaging plants, real-time data for non-destructive testing 
are required. The current study designed data-based 
equipment for a traditional fruit weighing and grading 
machine to collect data such as fruit size and weight for 
shipping. Size was calculated using real-time 
identification and standard objects in the environment, 
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while the weight of the fruit was recorded on an electronic 
scale.  

II. LITERATURE REVIEW 

Fruit detection methods, including numerical analyses 
of yield and quality, have been a subject of research since 
2005 [1–4]. Most of the detected values are absolute, such 
as sweetness and acidity, which are measured through 
destructive testing. The current paper implemented non-
destructive testing using deep learning. 

In deep learning, there are many different approaches to 
marking ground truth. Rectangles, irregular-shaped pixels, 
or polygons can be used. The network architecture and 
detection results also differ. For example, Yolo v1-v5  
[5–9] and SSD [10] use box check marks, Mask-RCNN 
[11] uses box selection and polygons, and semantic 
segmentation [12] uses pixel labeling. In the latter example, 
three marking methods were used to accommodate the 
irregularity of flower patterns and vines: flower patterns 
were marked using frame selection, pixels, and outlines, 
while vines were marked using pixels and outlines. 

To increase the accuracy of positioning, semantic 
segmentation with pixel tags can be based on the pre-
trained model Deeplab 3+ [13]. This model is a 
convolutional neural network specially designed for 
semantic image segmentation. It is applied in fully 
convolutional networks, SegNet [14], and U-Net [15]. To 
speed up the training process, a small amount of 
information can be added to the pre-trained model. The 
Cambridge University CamVid dataset [16], which 
provides pixel-level labels for 32 semantic categories, can 
also accelerate the process. Object edges can also be 
optimized, and the Z-axis distance can be used to obtain 
depth information through radar and binocular and 
monocular vision to provide 3D positioning parameters. 
Due to different hardware limitations, achievable error 
values differ.  

The applications of deep learning are diverse. For 
example, lidar and radar are used in self-driving  
cars to detect their distance from surrounding objects.  

Journal of Advanced Agricultural Technologies, Vol. 11, No. 2, 2024

28doi: 10.18178/joaat.11.2.28-32 

https://orcid.org/0009-0004-6473-3745


Monocular [17, 18] and binocular [19, 20] vision use 
software logic algorithms to calculate object distance 
through pinhole imaging. Although the cost of these 
approaches is less than that of radar, they are easily 
affected by weather or dirt, and the distance accuracy is 
poor.  

With regard to binocular vision, INTEL D435i has been 
used in pineapple fields [21] to obtain the center point 
position of pineapples based on object detection. The Z-
axis distance (mm) is determined based on the center point 
coordinates, and then the X- and Y-axis distances (mm) are 
obtained through calculation. At a distance of 300–800 
mm, the Z-axis error value of this approach is less than 
1.12% (−2 to +6 mm), the X-axis error value is less than 
1.99%, and the Y-axis error value is less than 1.20%. 

Time of Flight (TOF) is a method that uses light 
reflection to calculate the distance of an object. It uses a 
light-emitting diode or a laser diode to emit infrared light. 
When the infrared light is reflected by the object, the 
distance of the object is obtained by multiplying the speed 
of light by the time difference. TOF technology can be 
combined with optical fiber and monocular vision to more 
accurately detect the distance of an object. Research on 
this approach was published in a 2020 symposium [22]. 

III. MATERIALS AND METHODS

The system flow chart implemented in this study is 
shown in Fig. 1. The network camera has high-definition 
resolution, in which the image size is 1280 × 720. We 
placed the fruit on an automatic rotating disk (i.e., 
turntable) to obtain images from different angles and then 
took eight or nine images of each fruit to build an image 
database. We used a digital scale with an accuracy of  
0.02 g to establish the weight of 50 fruits and manually 
measured the length and diameter of each fruit to analyze 
the error value of automatic measurement. Because the 
turntable is an object with a fixed length, width, and height, 
we regarded this as a standard object with a diameter of 
146 mm and a height of 35 mm. We used this standard to 
obtain the ratio between the actual size in millimeters and 
the pixels in the picture (mm/pixel). The length and 
diameter of the fruit were selected by the deep learning 
frame and multiplied by the ratio to estimate the true size 
of the fruit. The estimated fruit size and weight were then 
sent to the database. 

Fig. 1. System flow chart. 

A. Image Labeling

We placed the fruits on the turntable and made a mark

every 45 degrees from A to H. We took eight images of 50 
fruits, resulting in a total of 400 samples. We used 
MATLAB Image Label tool, as shown in Fig. 2, using a 
rectangular shape and two category labels (guava, 
turntable). 

For the label ‘guava’, the four sides of the frame had to 
fit around the periphery of the fruit and could not include 
the fruit stem. The four sides of the turntable label fit 
around the periphery of the turntable, completely framing 
it. 

Fig. 2. Two categories of image labeling tools in Matlab. 

B. Deep Learning Network

We used the YOLO v4-coco [19] network architecture,
which is a real-time system and pre-trained model. In 
packaging plants, great importance is attached to 
processing time. Therefore, we selected this architecture 
for its efficiency. As our image database held less than a 
thousand images, we needed a pre-trained YOLO network 
architecture. We thus used the COCO database to pre-train 
YOLO v4-COCO to obtain the initial network weight. 
After training with the 400 images in our database, this 
network architecture could increase the resolution of the 
system. In order to avoid over-learning during the training 
process, we randomly selected 70% of the image database 
(280 images) for training. The remaining 30% (120 images) 
was used to verify the network architecture after training 
and was therefore called the test group. 

We set the maximum number of epochs to 80 and the 
learning rate as shown in Fig. 3. 

Fig. 3. Learning rate and changes in total loss. 
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C. Pixel-to-Distance Conversion 

Because packaging plants requires immediate, low-cost, 
and easy-to-install equipment, we did not consider using 
higher unit price methods such as binocular systems or 
TOF to obtain more accurate Z-axis distances. Rather, we 
simply used a color camera to capture a standard object 
(i.e., a turntable with a diameter of 146 mm and a height of 
35 mm) placed in front of the screen. We used the turntable 
width (turntable_w) selected by the frame and the actual 
turntable diameter (turntable_diameter) to calculate the 
ratio of pixels to the actual size (conversion ratio) in each 
picture, as follows: 

   (1) 

This allowed us to obtain four parameters (x, y, △W,  
△H) for each picture. The starting point in the frame was 
x and y, and the △W and △H were the width and length of 
the frame. We used △W and △H to multiply the 
conversion ratio to obtain the estimated fruit size as 
follows: 

𝐹𝑟𝑢𝑖𝑡௦௭ሺ௧ሻ ൌ ∆𝐻 ൈ 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛_𝑟𝑎𝑡𝑒      (2) 
𝐹𝑟𝑢𝑖𝑡௦௭ሺ௧ሻ ൌ ∆𝑊 ൈ 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛_𝑟𝑎𝑡𝑒      (3) 

IV. RESULT AND DISCUSSION 

Using the deep learning architecture of YOLO v4, the 
recognition rate of both fruits and turntables was 100%. 
The maximum error between the manual measurement and 
deep-learning prediction of fruit diameter was 15.3 mm, 
and the maximum error in length was 14.5 mm.  

A. Deep Learning Recognition Rate 

The two categories were classified after 11,191 
iterations, which took 4.84 hours, with the following 
results: total loss (6.6 ൈ 10ିଶ ), box loss (2.2 ൈ 10ିଶ  ), 
object loss (4.1 ൈ 10ିଶ), and class loss (3.1 ൈ 10ିଷ). The 
results are shown in Fig. 4. 

 
Fig. 4. Image of detected fruit and turntable. 

B. Actual Size Error Value 

To calculate the predicted fruit size, images were taken 
of each fruit from eight different angles. In each image, the 
pixel sizes of the fruit and the turntable were detected. The 
conversion ratio value was calculated through the pixel 
width of the turntable in each image and its known width 
of 146 mm (Eq. (1)). The predicted fruit diameter and 

length in each image could then be calculated using Eqs. 
(2) and (3). We averaged the predicted fruit size for each 
fruit and calculated the standard deviation of the eight 
pieces of data for each fruit. A total of 100 standard 
deviation values were all less than 12.5. The maximum 
diameter error of the average predicted value of each fruit 
was 15.3 mm, and the maximum length error was 14.5mm, 
as shown in Fig. 5 and Table 1. In Fig. 5(a), the blue bars 
were the average predicted fruit diameter value of each 
fruit, and the orange bars were the diameter value 
measured manually using a vernier caliper. As shown in 
Fig. 5(b), the black bars were the average predicted fruit 
length value of each fruit, and the green bars were the 
diameter value measured manually. 

 
(a) 

 
(b) 

Fig. 5. Prediction and manual measurement of 50 fruits. 

In Table 1, the manual measurement values were 
obtained by measuring the diameter and length of each 
fruit once. The predicted size values were obtained using 
Eqs. (1) to (3). The △ values were obtained by subtracting 
the predicted size value from the manually measured value. 

To figure axis labels, use words rather than symbols. Do 
not label axes only with units. Do not label axes with a 
ratio of quantities and units.  

Color figures will be appearing only in online 
publication. All figures will be black and white graphs in 
print publication.   

TABLE I. FORECAST AND ACTUAL VALUE ERROR TABLE 

Sample 
# 

Manual 
measurement 

(mm) 

Predicted size 
(mm) 

△manual-predicted 
(mm) 

Diameter Length Diameter Length Diameter Length 
1 92.5 103.6 94.25 112.12 −1.75 −8.52 
2 93.5 95.2 96.53 105.15 −3.03 −9.95 
3 97.1 95.6 96.63 110.05 0.47 −14.45 
4 95.3 106.7 97.67 117.98 −2.37 −11.28 
5 87.4 96.9 95.96 103.61 −8.56 −6.71 
6 82.5 75 75.70 88.34 6.80 −13.34 
7 83.6 85.4 79.41 87.91 4.19 −2.51 
8 82.3 74.6 84.49 75.99 −2.19 −1.39 
9 91 89.2 91.11 91.82 −0.11 −2.62 
10 88 79 87.86 80.52 0.14 −1.52 
11 103 96 100.12 97.64 2.88 −1.64 
12 87.2 75 89.95 70.08 −2.75 4.92 
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13 91 81 86.58 81.48 4.42 −0.48 
14 90 84 88.04 83.84 1.96 0.16 
15 97 90 93.71 92.05 3.29 −2.05 
16 80 78 88.69 81.52 −8.69 −3.52 
17 106 119 100.61 114.03 5.39 4.97 
18 97 87 96.35 86.20 0.65 0.80 
19 96 94 100.67 94.66 −4.67 −0.66 
20 106 103 103.30 107.97 2.70 −4.97 
21 87 81 86.95 81.07 0.05 −0.07 
22 104 100 100.76 100.39 3.24 −0.39 
23 82 74 97.29 77.83 −15.29 −3.83 
24 93 84 96.71 87.29 −3.71 −3.29 
25 108 98 103.76 103.26 4.24 −5.26 
26 93 97 99.43 97.58 −6.43 −0.58 
27 79 78 85.26 81.21 −6.26 −3.21 
28 88 80 87.73 74.66 0.27 5.34 
29 96 97 99.77 98.06 −3.77 −1.06 
30 94 93 93.64 90.48 0.36 2.52 
31 92 94 94.87 93.51 −2.87 0.49 
32 107 92 104.49 95.00 2.51 −3.00 
33 96 85 100.46 89.07 −4.46 −4.07 
34 89 79 90.46 73.05 −1.46 5.95 
35 87 81 91.59 83.77 −4.59 −2.77 
36 98 92 98.46 95.21 −0.46 −3.21 
37 99 95 101.89 97.47 −2.89 −2.47 
38 93 83 90.60 86.65 2.40 −3.65 
39 99 87 101.61 91.95 −2.61 −4.95 
40 92 76 94.25 84.82 −2.25 −8.82 
41 104 92 103.24 96.60 0.76 −4.60 
42 102 96 107.72 104.39 −5.72 −8.39 
43 109 101 105.60 102.29 3.40 −1.29 
44 101 98 98.54 99.37 2.46 −1.37 
45 97 87 96.00 88.48 1.00 −1.48 
46 101 100 101.71 104.46 −0.71 −4.46 
47 113 98 109.05 103.31 3.95 −5.31 
48 97 97 95.09 93.21 1.91 3.79 
49 95 98 93.59 98.45 1.41 −0.45 
50 95 99 95.00 99.16 0.00 −0.16 

The predicted height of the third sample was measured 
manually, and its standard deviations were all less than 
5.99. This is because when deep learning automatically 
selected the fruit, the frame fit incorrectly over the top and 
bottom of the fruit, as shown in Fig. 6(a). The calculated 
length therefore exceeded estimates. 

The predicted height of the 23rd sample was measured 
manually, and its standard deviation was less than 6.54. 
This is because when deep learning automatically selected 
the turntable, the frame fit incorrectly over the left and 
right sides of the turntable, as shown in Fig. 6(b). 
Therefore, the wrong conversion ratio value was 
calculated.  

  
(a) (b) 

Fig. 6. Images of two fruits with larger error values: (a) frame selection 
did not touch the top and bottom of the fruit; (b) frame selection did not 
touch the left and right sides of the turntable. 

V. CONCLUSION 

In this paper, we used low-cost and simple-to-install 
equipment. Only a lens and an electronic scale are 
necessary for the proposed approach to measure fruit 
quality in packaging plants. We took 8 images of 50 
guavas, resulting in a total of 400 images in the database. 
We also manually measured the length and diameter of the 
fruit to serve as the ground truth dataset. The recognition 
rate was 100%, with a maximum error value of 15 mm for 
fruit diameter and length and a maximum standard 
deviation of 12.5. In the samples with the largest error, the 
frame selection was floating; i.e., the object did not touch 
the edges of the frame. In future work, we plan to add more 
samples to the database, including images taken in 
different environments to increase the robustness of 
identification. 
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