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Abstract—With the development of precision agriculture 

and agricultural insurance, there are increasing demands 

for the fine-scale crops planting information in large areas. 

This paper presents a comprehensive approach for crop 

type identification and planting area estimation at a 

farmland plot scale by collaboratively utilizing the high-

and-moderate spatial resolution satellite imagery. The 

proposed method roughly contains four steps: firstly, by 

implementing an image segmentation and a following 

manual editing, the objects of farmland plot with exact 

boundary are extracted from the high spatial resolution 

imagery; Secondly, with the effective-data processing 

technology and spectral indices calculation based on the 

multi-temporal moderate resolution images, the cloudlessly 

fragmentary effective data which served as the source of 

properties for plot objects is obtained; thirdly, the specific 

NDVI time-series and phenological parameters for each 

farmland plot are further derived from these effective data; 

Lastly, based on the multi-dimensional feature space of plot 

objects, the crop types and corresponding planting areas are 

mapped using the Random Forest Classifier. This approach 

has been tested for several crops in Sihong County, Jiangsu 

Province, China. The results showed that, this method can 

map the distribution of wheat, rice and corn at a farmland 

plot scale with relatively high accuracy. The user accuracy 

of wheat, rice and corn reached to 98.62%, 97.05% and 

97.74%, respectively, and the overall accuracy was 95.36% 

with a Kappa coefficient of 0.936. The area accuracy of 

these three crops also amounted to 94.18%, 93.37% and 

91.23%, respectively. This experiment illustrated the 

effectiveness and usefulness of the proposed method, and 

was referential to finely planting information extraction for 

other crops. 
 

Index Terms—remote sensing, crop identification, farmland 

plot scale 

 

I. INTRODUCTION 

The application of remote sensing on crops planting 

information retrieval, such as crop types mapping, has 

long been studied. Since crops manifest differential 

spectral response in remotely sensed images at different 

stages of maturity, which enable building a crop-specific 

temporal record, most of these efforts make use of the low 

spatial resolution time-series data such as AVHRR or 

MODIS due to its high revisit frequency during crops 
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growing season [1]-[3]. There are also a considerable 

number of studies focusing on the crop type mapping 

using moderate (roughly30m) resolution images with 

limitedly temporal coverage acquired at the critical time 

points in crop’s lifecycle [4], [5]. Because of their low or 

moderate spatial resolution, they provide relatively coarse 

results and thus more suitable for large-scale investigation.  

In order to obtain accurate crops planting information at 

a finer scale, several techniques have been developed in 

recent years [6], [7]. By merging the information from 

high-resolution low-time-frequency observation with low 

spatial resolution and high-temporal-frequency 

observations, Wu et al. [8] developed a spatial and 

temporal fusion approach to generate a new synthetic 

dataset with both high spatial and temporal resolution 

using the Landsat, GF1-WVF, HJ CCD and MODIS data. 

These synthetic dataset was then applied into the crops 

identification, and the results showed that the overall 

accuracy of crops classification reach 0.91 and 0.95 in the 

two test sites, respectively, both higher than those 

obtained by using multi-temporal Landsat data. Liu et al. 

[9] also proposed a synthetic data simulation method by 

minimizing the differences between the crop’s ideal 

growing curve and that from the real observation, using 

different satellite data. The ideal curves of different crops 

were chosen from the pure pixel of time-series MODIS 

data and the real observations consisted of several 

medium resolution sensors. When applied into the crops 

identification, Liu concluded that up to 20% of 

improvement in classification accuracy can be achieved. 

There also exist many studies employing the object-

oriented classification method, which based on an image 

segmentation, to conduct the crops investigation [10]-[12]. 

Generally, most of the studies adopt the high spatial 

resolution (0.2-5m) images from the satellite or aerial 

photography with only 1 or 2 temporal coverage during 

the crops’ growing season. Although the multi-resolution 

fusion and the object-oriented methods can provide 

relative high classification accuracy at a finer scale, 

however, these high accuracy and spatial details may 

come at the cost of reduced temporal availability, highly 

financial expenditure and are often interfered with the 

presence of cloud. Therefore, they are to some extent not 

suitable for operational crops investigation at a finely 

field-scale, especially in areas where cloudy weather is 

common. 
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With the development of precision agriculture and the 

increasing demands for higher investigation precision in 

agricultural management, agricultural insurance and 

disasters assessment, it is urgent to obtain the crops 

planting information at a farmland plot scale. The high 

spatial resolution satellite images is capable of 

delineating  the precise outline of farmland plots, but 

limited in reflecting the growing features of crops due to 

its low temporal resolution; while the moderate spatial 

resolution images, with a relatively high temporal 

resolution, can recognize the growing properties although 

with a coarse spatial resolution. Therefore, it might be 

helpful to exploit the respective advances of both satellite 

data for achieving a better result.  

This paper proposed a comprehensive approach for 

crops planting information retrieval at a farmland plot 

scale by combining the high and moderate resolution 

satellite data. The high resolution data adopted by this 

study was ZY-3 images, and the moderate data came from 

GF1-WVF sensors, which constituted a set of time-series 

images spanning the whole growing season at a time 

interval of roughly half a month. All the high and 

moderate images were geo-registrated to the same 

reference image with a mean mis-registration error of no 

more than 1 pixel (16m). As a first step, the boundaries of 

farmland plots were extracted through implementing a 

multi-resolution segmentation on the high resolution 

image followed by a manual editing and smoothing. 

Secondly, with the effective-data processing technology 

and spectral indices calculation based on the multi-

temporal moderate resolution imagery, the fragmentary 

effective data was acquired, and the time-series NDVI and 

derived phonological parameters for each object were 

further obtained from these effective data. Finally, the 

different crop types and corresponding planting areas were 

mapped using the Random Forest Classifier. 

This approach has been tested for several crops in 

Sihong County, Jiangsu Province, China. The results 

showed that, this method can map the crop types and 

corresponding planting areas at a level of farmland plot 

with relatively high accuracy. The user accuracy of wheat, 

rice and corn reached to 98.62%, 97.05% and 97.74%, 

respectively, and the overall accuracy was 95.36% with a 

Kappa coefficient of 0.936. When compared with the 

published statistic data of crops planting area, the area 

accuracy of these three crops also amounted to 94.18%, 

93.37% and 91.23%, respectively. This study illustrated 

the effectiveness and usefulness of the proposed method, 

and also provided a salutary lesson for finely planting 

information extraction for other crops. 

II. METHODOLOGY 

The proposed method takes the high resolution images 

as the source of “detailed structure information” such as 

farmland plot boundary, and regards the time-series 

moderate resolution images as the raw materials for 

“properties information” like spectral and phonological 

features. By fusing the “properties information” with the 

farmland plot object, the crop type and planting area can 

be retrieved for each plot through the implementation of 

crop classification model. Furthermore, in order to avoid 

the influences of cloud cover and cloud shadow, and to 

increase the data coverage in areas where rainy and/or 

cloudy weather is commonly appeared during the growth 

season of crops, a data processing method called Effective 

Data Processing Technology is applied into the multi-

temporal moderate resolution images. As showed in Fig. 1, 

the proposed method mainly consists of four components: 

(a) farmland plot extraction; (b) Effective-data processing 

of multi-temporal moderate images; (c) acquisition of 

farmland plot properties; (d) crops identification. Each of 

these components will be detailed in the following 

sections. 
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Figure 1.  The flowchart of the proposed method 
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A. Farmland Plot Extraction 

With appropriate resolution of 2m, the ZY-3 fusion 

image is not only capable of discerning the detailed 

structure of plots (e.g., farmland plot boundaries) but also 

can minimize the inner spectral heterogeneity, which is 

therefore suitable for farmland plot extraction through 

image segmentation. In this paper, we first located the 

distribution of farmland areas with the help of auxiliary 

LUCC(Land Use and Land Cover Change, LUCC) data, 

then applied a multi-resolution segmentation on these 

regions and the preliminary objects of farmland plot were 

obtained. Finally, to enhance the positioning accuracy of 

the plots, these objects with jagged boundaries were 

manually edited and smoothed (see Fig. 2). Although the 

extraction of farmland plot needs quite a few manual 

editing, it has relatively high reusability and is beneficial 

to the latter fast update considering the temporal stability 

of farmland plot boundaries. 

 

Figure 2.  The farmland plot extraction result 

B. Effective-Data Processing of Multi-Temporal 

Moderate Images 

When cloud cover exceeded certain percent (e.g., 70%), 

an image is often regarded as useless data and is 

abandoned in traditional remote sensing application, 

which may cause the problem of data missing in spatial or 

temporal coverage. This method, by contrast, takes those 

heavy cloud-cover images as also an important source of 

information by using the effective-data processing 

technology based on cloud and cloud-shadow detection. It 

extracts the non-cloud pixels from the gaps between 

cloud-cover regions and use these “useful pixels” in a 

form of cloudlessly fragmentary “data pieces”, thus 

significantly increasing the spatio-temporal coverage of 

remote sensing data. As mentioned above, the cloud and 

cloud-shadow detection plays a key role in the effective-

data processing. Here we adopt the cloud detection 

method proposed by Zhou [13], which first transforms 

images into the YCbCr space from original RGB to 

enhance the contrast of cloud and shadow with 

background pixels, then employs an Otsu algorithm to 

automatically determine the threshold values for cloud 

and shadow respectively. By segmenting the enhanced 

image with these thresh values, the distribution of cloud 

and shadow are finally detected (for more details, one can 

refer to [13]). After that, the fragmentary effective-data 

can be obtained by masking images with the 

corresponding results of cloud and shadow detection, and 

the NDVI dataset will be further calculated based on these 

effective data. Fig. 3 demonstrates the processing chain of 

effective-data and NDVI dataset. 

  
(a)                                                        (b) 

  
(c)                                                       (d) 

Figure 3.  Demonstration of effective data processing: (a) raw image; (b) 
results of cloud detection; (c) cloud and shadow removal; (d) 

fragmentary NDVI data 

C. Acquisition of Farmland Plot Properties 

1) Normalization of different sensors’ NDVI 

Since the time-series NDVI dataset consisted of several 

satellite sensors, there may exist variations in the NDVI 

values due to the differences between sensors such as 

band width, spectral respond function or observation 

geometry, which in turn will bring uncertainties in 

subsequent application. Generally, these variations can be 

viewed as systematic deviation, and therefore can be 

calibrated with a linear regression fitting. In this paper, the 

GF-WVF1 was chosen as standard sensor, and the NDVI 

from other sensor, which covering the same areas in the 

same date as GF-WVF1, was acquired to build the 

regression model. For more information about the linear 

inter-sensors’ NDVI calibration, one can refer to the 

reference [14]. Table I shows the resultant calibration 

models between GF-WVF1 and other sensors. With these 

regression models, the normalization of raw NDVI dataset 

was accomplished. 

TABLE I.  REGRESSION MODELS OF GF-WVF1 AGAINST OTHER 

SENSORS 

Sensor Fitting equation R2 RMSE 

GF1-WFV2 Y=0.769X+0.1699 0.8977 0.0195 

GF1-WFV3 Y=0.8233X+0.1285 0.6362 0.0416 

GF1-WFV4 Y=0.9195X+0.0446 0.7975 0.0339 

* Y: NDVI of GF-WVF1; X: NDVI of other sensors 
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2) Time-series acquisition and reconstruction 

Based on the calibrated NDVI dataset, preliminary time 

series of NDVI for farmland plots were obtained by taking 

each plot as a basic unit. However, the temporally 

observation distribution of individual plot may largely 

differ because of the use of fragmentary effective-data. 

This heterogeneously temporal coverage of farmland plots 

makes the design and training of classifiers much more 

complex and may introduce artifacts, both in terms of 

continuity, but also in terms of classification accuracy. To 

solve these problem, Inglada et al. [6] use a linear 

interpolation to resample the time-series images on the 

same temporal grid. Similarily, we first interpolated all the 

time series using the SPLINE function with a fixed time 

interval, then further reconstructed by the Savitzky-Golay 

filter, see Fig. 4. 

 

Figure 4.  The contrast of NDVI time-series reconstruction 

3) Extraction of farmland plot properties 

Crops present specific spectral features at different 

growth stages, which can be reflected in the changes of 

NDVI time series. In other words, the NDVI time-series 

curves is capable of depicting the phenological 

characteristics of crops, and thereby possesses potential 

for distinguishing crop types with their specific phenology.  

TABLE II.  THE PHONOLOGICAL AND SPECTRAL PROPERTIES USED IN 

THIS STUDY 

Property Meaning Property Meaning 

SOS Start of growing season, 

the time when NDVI 

become higher than 20% 

of maximum value. 

EVI Enhanced 

vegetation index. 

EOS End of growing seaon, 

the time when NDVI 
become lower than 20% 

of maximum value. 

NDWI Normalized 

difference water 
index 

LOS Long of growing season, 
the time period between 

SOS and EOS. 

NIR Near Infrared 
band value 

MOS Maximum NDVI of 
growing season. 

Maximum 
of NIR 

Maximum NIR 
band value of 

growing season 

WR Withering rate, the rate 
from MOS to EOF. 

Minimum 
of NDVI 

Minimum NDVI 
of growing season 

NDVI Normalized difference 

vegetation index. 

Minimum 

of NIR 

Minimum NIR 

band value of 
growing season 

RVI Ratio vegetation index.   

* The spectral properties such as NDVI are statistically calculated for 
each month. 

By far many studies have been carried out for 

vegetation phenology monitoring or crops planting 

information extraction using remote sensing data. 

Although most of these studies focused on the low 

resolution time-series images, the developed approaches 

and relevant phonological parameters are still beneficial to 

our study. In this paper, both of the spectral and 

phonological properties were utilized to construct a 

feature space for crops identification. The phonological 

parameters were calculated with a dynamic threshold 

method [15] and consisted of 1) maximum value in NDVI 

series, MOS; 2) start of growing season, SOS; 3) end of 

growing season, EOS; 4) long of growing season, LOS; 5) 

withering rate, WR. The spectral properties included a 

variety of vegetation indices and band values represented 

in various statistically forms. Parts of these properties 

were listed in Table II. Fig. 5 shows the geometrical 

meaning of these phonological parameters. 

 

Figure 5.  Remote sensing phonological features derived from NDVI 

curve 

D. Crops Identification 

The Random Forest (RF) algorithm was developed by 

Breiman [16] and recently has become one of the most 

popular Ensemble Learning technologies. It consists of an 

arbitrary number of simple trees, which are used to 

determine the final outcome. For classification problems, 

the ensemble of simple trees vote for the most popular 

class. This algorithm has been approved to be capable of 

handling a large number of variables without variable 

selection, and running efficiently on large dataset. 

Meanwhile, it can provide estimates of what variables are 

important in the classification. Considering the variables 

volume and their complicated relationship in the feature 

space, we employed the random forest algorithm as the 

classifier in this study. 

III. EXPERIMENT AND RESULTS 

A. Study Areas 

The presented method was tested in Sihong county, 

Which is located between 117°56′E-118°46′E and 

33°08′N-33°44′N in the northwest of the Jiangsu 

province, see Fig. 6. This areas is strongly influenced by 

the East Asian  monsoon and the topography is 

characterized by the plain and downland with sparing 

hills distributed in the southeast. Because of the monsoon 

and its location near the Hongze Lake, the cloudy/rainy 

weather is common in this region, especially in  summer. 

The wheat, rice and corn constitute the three main crops 

in this area, and besides that, the soybean, peanut and 
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watermalon are also commonly planted. the cropping 

system mainly includes two types, i.e., wheat-single 

season rice and wheat-corn.  

 

Figure 6.  The location of study area 

B. Data Sources and Preprocessing 

Both satellite data and land cover map were used in this 

study. The cloudless 2m ZY-3 data was adopted as high 

resolution image and, the moderate data consisted of 

images from GF1-WVF sensors and constituted a time-

series dataset spanning from March 2015 to November 

2015 at a time interval of approximate 15 days. More 

information about the data sources was listed in Table III.  

TABLE III.  THE SATELLITE DATA USED IN THIS STUDY 

Date Location Sensor Date Location Sensor 

20150312 E117.9N32.6 WFV2 20150823 E117.9N34.2 WFV2 

20150312 E118.3N34.2 WFV2 20150901 E117.9N33.4 WFV4 
20150328 E118.3N32.9 WFV1 20150828 E117.1N33.4 WFV4 

20150414 E119.0N33.9 WFV3 20150908 E118.1N32.9 WFV1 

20150422 E118.0N32.6 WFV2 20150921 E119.1N33.9 WFV3 
20150422 E118.4N34.2 WFV2 20150925 E118.4N34.3 WFV2 

20150501 E117.2N33.4 WFV4 20151003 E119.2N34.2 WFV2 

20150516 E119.3N32.9 WFV1 20151012 E117.6N33.4 WFV4 
20150525 E119.0N33.9 WFV3 20151015 E119.2N32.9 WFV1 

20150606 E118.5N32.6 WFV2 20151020 E118.5N33.5 WFV4 

20150606 E118.9N34.2 WFV2 20151027 E119.1N32.9 WFV1 
20150619 E117.2N33.5 WFV4 20151102 E116.4N33.3 WFV4 

20150705 E116.7N32.6 WFV2 20151114 E116.6N33.4 WFV4 

20150713 E117.9N3.6 WFV2 20151129 E119.2N32.9 WFV1 

20150713 E118.3N34.2 WFV2 20130321 E118.4N33.4 ZY3 

20150725 E117.8N32.9 WFV1 20130321 E118.3N33.1 ZY3 

20150730 E119.2N33.4 WFV4 20130311 E117.8N33.4 ZY3 
20150803 E119.1N33.5 WFV4 20130311 E117.7N33.1 ZY3 

20150823 E117.5N32.6 WFV2    

All the high and moderate images were first 

radiometrically corrected to obtain the surface reflectance 

using 6S model, and then geo-registrated to the same 

reference image with a mean mis-registration error of no 

more than 1 pixel (16m). After that, these new dataset 

was served as input into the proposed method for crops 

identification and planting areas estimation. 

C. Crops Growing Characters and Crops Classification 

As showed in Fig. 7, there exist obvious differences in 

the shape and magnitude between different NDVI curves, 

which reflect the specific growing patterns of different 

crop types. These temporal discrepancy of NDVI changes 

forms the basis for phenology analysis, and is helpful to 

crops classification by enlarging the separability of 

different crop types which may present similar spectral 

features in certain time point. For example, the spectral 

features of peanut and rice may look alike in the late July 

(about at the point of 21st in time-axis), however, they can 

be temporally differentiated with the differences in their 

specific SOS (start of growing season) and LOS (long of 

growing season). 

In this study, the crop types were distinguished into 

wheat, rice and corn, and all other farmland vegetation 

(including other crops and non-crop plants) were together 

labeled as “others”. In order to acquire the ground truth 

data, two field survey were carried out in June 2015 and 

October 2015. By using the GPS positioning technology, 

we obtained a total number of 520 plot samples for the 

three main crops, and 84 plots for others. These samples 

were randomly grouped into two parts, i.e., the modeling 

and validation samples. In the end, a random forest 

classifier with 1000 trees was employed and trained based 

on the modeling samples and then applied into the rest of 

farmland plots. 

 

Figure 7.  Reconstructed NDVI curves of crops belonging to different 
crop-rotation composition 

D. Results and Accuracy Evaluation 

The distribution of wheat was showed in Fig. 8a. It 

predominated in the study areas and represented as the 

most widely planted crop in the first half of the year. The 

distribution of rice and corn were showed in Fig. 9a. It can 

be seen that there existed different patterns in their spatial 

distribution. The rice was concentrated in the south and 

central parts of the study area where the plain is the 

predominant topography and irrigation facilities are 

conveniently available. Meanwhile, in the downland areas 
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lacking of enough irrigation system, surrounding the rice 

planting regions, the corn was mainly grew. As showed in 

Fig. 8b and Fig. 9b, these crops were mapped at a 

farmland plot scale, which is beneficial to ground-based 

verification and further precise application. 

 

         
(a)                                                                                              (b) 

Figure 8.  Distribution of wheat at farmland plot scale 

        
(a)                                                                                              (b) 

Figure 9.  Distribution of rice and corn at farmland plot scale 

The confusion matrix was listed in Table IV. The user 

accuracy of the crops, i.e., wheat, rice and corn, reached to 

98.62%, 97.05% and 97.74%, respectively, and the overall 

accuracy was 95.36% with a Kappa coefficient of 0.936. 

Table V was the corresponding planting areas of these 

crops. When compared with published statistical data, the 

derived area accuracy of these three crops also amounted 

to 94.18%, 93.37% and 91.23%, respectively. Both of 

classification and area estimation can achieved a 

satisfactory accuracy in this study, and demonstrated the 

effectiveness of the proposed method. 

TABLE IV.  CONFUSION MATRIX FOR CROPS CLASSIFICATION 

Crop types Wheat Rice Corn Others Total 
User Accuracy 

(%) 

Wheat 214 0 0 3 217 98.62 

Rice 0 156 0 4 160 97.05 

Corn 0 2 130 1 133 97.74 

Others 5 5 8 76 94 80.85 

Total 219 163 138 84 604 
 

Mapping 
accuracy(%)  

97.72 95.71 90.47 
  

Overall 

accuracy(%)  
95.36 

    

Kappa 
 

0.936 
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TABLE V.  AREA ACCURACY OF CROPS PLANTING AREA EXTRACTION 

Crop types 
Retrieved area 

(1,000ha) 

Published area 

(1,000ha) 

Area accuracy 

(%) 

Wheat 97.32 103.33 94.18 

Rice 55.37 59.30 93.37 

Corn 38.15 41.82 91.23 

Total area 190.84 204.45  

Mean — — 93.34 

IV. CONCLUSION AND DISCUSSION 

This paper presented a method of crops identification 

and planting areas estimation at farmland plot scale based 

on the combination of high and moderate resolution 

satellite data. By taking the Sihong county in Jiangsu 

province as study area, the proposed method was tested on 

the wheat, rice and corn classification and corresponding 

planting areas estimation. The results showed that this 

method possess promising potential for crop planting 

information retrieval with the overall accuracy of 

classification and planting areas estimation reaching 

95.36% and 93.34%, respectively. It is also safe to draw 

some conclusions as follows: 

a) Taking farmland plot as the basic unit in 

classification can prevent the ‘peper’ phenomenon which 

often encountered with traditional image classification, 

thus increasing the accuracy and veriability of classified 

results.  

b) The combination of multi-sources images and the 

use of effective-data technology can significantly increase 

the spatio-temporal coverage of data, therefore providing 

strong support for crops monitoring especially in regions 

where rainy/cloudy weather commonly appeared. 

c) By collaboratively utilizing the information derived 

from both the high and moderate resolution satellite data 

and, by introducing phonological characters into the 

classification, this method can effectively enhance the 

separability of crops at a fine scale, thereby increasing the 

accuracy of crops identification in both space and 

properties. Although our method can achieve generally 

satisfactory performance, there are some aspects still to be 

improved. One is the acquisition of farmland plots which 

by far still needs quite a few manual editing. More efforts 

should be put into the optimization of image segmentation 

algorithm, to get more spatially accurate boundaries of 

farmland plot and reach a higher level of automation. 

Another aspect is dealing with the high degree of 

fragmentation and heterogeneity of farmland plots. In that 

case, the size of farmland plot is often smaller than that of 

pixels, therefore the spectral unmixing approaches should 

be introduced to solve this problem.  
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