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Abstract—In order to reduce the horizontal deformation 

caused by the sprayer rigid frame of the plant protection 

machine, this paper establishes the structural dynamics 

model of the spray boom rigid frame based on the rigid 

frame structure commonly used in the plant protection 

machine spray boom, and transforms it into state space 

form. A robust controller based on state observer is 

designed. The boom frame with vibration deformation due 

to disturbance is controlled. Simulation results show that 

the method is effective in restraining the horizontal 

vibration deformation of the spray rod frame. The research 

results provide a method for restraining the vibration 

deformation of the spray rod frame structure of plant 

protection machine. 

 

Index Terms—spray boom, finite element, model space, 

vibration deformation, robust control 
 

I. INTRODUCTION 

As we all know, Chinese population is huge, so 

Chinese agricultural development is particularly 

important.So the development of Chinese agriculture is 

particularly important currently.In the process of 

development, agricultural natural disasters plant diseases 

and insect pests have become one of the issues of 

importance. From a global perspective, chemical control 

and mechanical spraying are still the main means of plant 

protection operations. There are many methods of plant 

protection, mainly chemical control, physical control, 

biological control and comprehensive prevention and 

robust control [1]. The chemical control method has the 

characteristics of high efficiency, timely control, quick 

effect, good control effect and low cost [2], which has 

become the main method of plant protection. Plant 

protection machinery is used to apply chemicals to crops 

and is widely used in the plant protection process for 

agricultural production. These chemicals are usually 

distributed by plant protection sprayers [3]. 

The plant protection machine spray boom can be 

regarded as a rigid frame structure. This structure has 

large size, low frequency and low damping. When the 

plant protection machine is in operation, the sprayer 

spray boom will be elastically deformed and vibrated due 

to the shape of the soil, which will cause locality. 

Excessive and under-spraying affects the quality of the 
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spray [4]-[6]. In terms of vibration reduction of the spray 

boom, even a small amplitude of vibration can cause 

excessive spray for a wide-angle sprayer [7]. Rong J.H 

(2000) proposed the theory of mitigating structural 

vibration and optimized structural parameters. This study 

provides a theoretical reference value for the lightweight 

design of sprayer booms compared to normal spray 

operation heights [8]. In 2003, Anthonis et al. designed 

an active control suspension to suppress the horizontal 

vibration of the sprayer and achieved certain effects [9]. 

Improving the boom suspension method is an effective 

method to reduce the vibration of the boom. However, 

this method cannot control the vibration deformation of 

the boom itself. More research es did not consider the 

vibration deformation of the boom and only considers it 

as a rigid body. Because the boom is essentially an 

elastomer, the vibration of the boom is still poor in this 

way. 

In this paper, a finite element method is used to 

establish the dynamic model of the boom frame structure 

and convert it into a modal space equation. For the spatial 

rigid frame structure in this paper, considering the 

inevitability of parameter uncertainty in the modeling 

process, the robust deformation control of the boom rigid 

frame is carried out by robust control method, and it is 

simulated, tested the effectiveness of the method. 

II. GEOMETRIC DESCRIPTION OF RIGID FRAME OF 

SPRAY ROD OF PLANT PROTECTION MACHINE 

The model in this paper uses the rigid frame structure 

commonly used in large-sized plant protection machine 

boom of Fig. 1.  

The entire structure is symmetrical with a total length 

L = 24m. The boom has has 27 nodes totally considering 

the displacement in terms of its level, each node has 6 

degrees of freedom. Displacement and rotation angles in 

the x-axis, y-axis, and z-axis directions, respectively, and 

7 and 8 nodes are fixed on the plant protection machine 

frame to limit all degrees of freedom. The total degree of 

freedom is 150, where 1, 2 and 13, 14 nodes are 1m apart, 

2 to 13 nodes are 22m apart, 2, 27 and 13, 15 nodes are 

0.5m apart, 7, 22 and 8, 22 nodes are 1.5m apart. 

 
Figure 1.  Spray rod rigid frame diagram and node distribution 
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III. FINITE ELEMENT METHOD MODELING OF SPRAY 

FRAME FRAME STRUCTURE OF PLANT PROTECTION 

MACHINE 

When the beam unit is subjected to a load, a bending 

deformation can be generated, and the strain corresponds 

to a bending strain. In the case where the length of the 

section is much smaller than the length of the beam 

element, the shear strain has little effect on the deflection 

of the beam, so it can be ignored. This beam element is a 

typical Euler-Bernoulli beam element as shown in Fig. 2. 

 
Figure 2.  Euler-Bernoulli beam element 

In this paper, the finite element method is used to 

parametrically model the boom frame. The unit type can 

be Euler-Bernoulli beam unit, which is the main basic 

structure of the rigid frame. For the beam element in 

space, each node has 6 degrees of freedom, namely 

tensile deformation, bending deformation and torsional 

deformation. For the spatial node unit, in the unit local 

coordinate system, the node variable can be expressed as 

𝛿𝑒 = [𝑥𝑖   𝑦𝑖   𝑧𝑖   𝜃𝑥𝑖
  𝜃𝑦𝑖

  𝜃𝑧𝑖
 𝑥𝑗   𝑦𝑗   𝑧𝑗   𝜃𝑥𝑗

  𝜃𝑦𝑗
  𝜃𝑧𝑗

 ]𝑇 

where 𝑥𝑖, 𝑦𝑖  and 𝑧𝑖 are the displacements of the nodes 

along the local coordinate direction, respectively. 

𝜃𝑥𝑖
, 𝜃𝑦𝑖

 and 𝜃𝑦𝑖
 are the corners of the section at the 

node. 

The strain and stress of the element can be expressed 

as 

𝜀 = 𝐵𝛿𝑒(𝑡)               (1) 

𝜎 = 𝐷𝜀 = 𝐷𝐵𝛿𝑒(𝑡)           (2) 

where B is the element strain matrix and D is the elastic 

matrix of the elements, which are only related to the 

nature of the material. The mass matrix and stiffness 

matrix of the element can be derived from the kinetic 

energy and potential energy expressions of the element. 

The unit kinetic energy expression is 

𝑇𝑒 =
1

2
∫ 𝜌(

𝜕δ𝑒(𝑡)

𝜕𝑡𝑉

)2𝑑𝑉 =
1

2
𝛿 𝑒̇(𝑡) ∫ 𝜌𝑁𝑇

𝑉

𝑁𝑑𝑉𝛿 𝑒̇(𝑡) 

=
1

2
𝛿 𝑒̇(𝑡)𝑇𝑀𝑒𝛿

𝑒̇(𝑡)      (3) 

In the formula (3), N is a unit form function matrix, 

𝑀𝑒 is a unit mass matrix, and its calculation formula is 

𝑀𝑒 = ∫ 𝜌𝑁𝑇
𝑉

𝑁𝑑𝑉                     (4) 

The expression of unit potential energy is 

𝑈𝑒 =
1

2
∫ 𝜀𝑇𝜎𝑑𝑉 =

1

2𝑉

∫ 𝛿𝑒(𝑡)𝑇

𝑉

𝐵𝑇𝐷𝐵𝑑𝑉𝛿𝑒(𝑡) 

=
1

2
𝛿𝑒(𝑡)𝑇𝐾𝑒𝛿

𝑒(𝑡)                       (5) 

In the formula (5), Ke is the stiffness matrix of the 

element, and its calculation formula is 

𝐾𝑒 = ∫ 𝐵𝑇𝐷𝐵𝑑𝑉
𝑉

             (6) 

Substituting the above kinetic energy into the 

Lagrangian equation, the finite element equation of the 

beam element is obtained 

M̅δ̈̅ + K̅δ̅ = PF̅(t)             (7) 

In the formula (7), P is a control force distribution 

matrix, and the number of rows is the number of degrees 

of freedom of the boom rigid frame, and the number of 

columns is the number of control forces. If there is a 

strong input in a certain degree of freedom, the 

corresponding degree of freedom and the column are 1 

and the remaining positions are filled with 0. F̅ is the 

input force vector, which is a column vector whose 

number of lines is the number of input forces. M̅ and K̅ 

are the total mass matrix and the overall stiffness matrix 

of the boom frame, which are obtained from the unit 

mass matrix 𝑀̅𝑒  and the unit stiffness 𝐾𝑒  matrix, 

respectively. For complex structures, the direction of 

each beam element will be different. To do this, it is 

necessary to establish a coordinate transformation matrix 

to move the local coordinate system to the global 

coordinate system. 

𝑀̅𝑒 = TT𝑀𝑒T  𝐾𝑒 = TT𝐾𝑒T 

The lumping method is to expand the unit mass 

matrices 𝑀̅𝑒 and 𝐾𝑒 into a square matrix of 150×150 

according to the total number of degrees of freedom. 

After expansion, the original unit mass and stiffness 

matrix are one-to-one corresponding according to their 

degrees of freedom, and the remaining positions are filled 

with 0. The expansion matrix of each element is summed 

to obtain an overall mass matrix M̅  and an overall 

stiffness matrix K̅. 

IV. FREE VIBRATION MODAL ANALYSIS OF SPRAYING 

FRAME OF PLANT PROTECTION MACHINE 

Based on ANSYS software and Block Lanczos method, 

the low-order natural vibration modes of the model are 

solved. The first four natural vibration frequencies are 

shown in Table I. 

TABLE I. NATURAL VIBRATION FREQUENCY 

Serial number 1 2 3 4 

Frequency (Hz) 0.449 0.451 2.857 2.865 

 

It can be seen from Table I that the first 4 natural 

frequencies of the structure are all lower than 3 Hz, 

showing the characteristics of low frequency. Since the 

plant protection machinery is driven in the field to 
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generate vibrations of less than 5 Hz, the controller 

designed for the vibration control of the rigid frame 

structure should have a control effect on the entire 

frequency band. 

Through modal analysis, it can be seen that in the first 

4th mode, when the boom is free to vibrate, the boom 

produces horizontal vibration deformation. The 

amplitude of the distal end of the boom frame can be seen 

from the first 4th mode diagram. Maximum, so the 

amplitude of the boom nodes 1 and 14 can be selected to 

describe the vibration of the entire boom and the 

suppression of the vibration of the entire boom when the 

control is applied [10]. 

V. ROBUST CONTROLLER DESIGN BASED ON STATE 

OBSERVER 

A. The Equation of Motion is Transformed into a State 

Space 

For a vibrating system with n degrees of freedom, the 

physical parameter model is described by n independent 

physical coordinates. In the linear range, the free 

vibration response in the physical coordinate system is a 

linear superposition of n main vibrations. Each main 

vibration is a specific form of free vibration. The 

vibration frequency is the main frequency (natural 

frequency) of the system, and the vibration form. That is, 

the main mode of the system (modal or natural mode). 

Firstly, the kinetic equations established by the finite 

element method are subjected to modal coordinate 

transformation. 

𝑥 = 𝜃𝑛                (8) 

where θ is the undamped modal matrix of the system 

obtained from the eigenvectors by mass normalization, 

and n is the generalized modal coordinate vector of the 

rigid frame. According to the modal coordinate 

transformation [11], the equation (7) can be changed to 

the following dynamic equations in generalized modal 

coordinates. 

𝑀̅∗𝑛̈ + 𝐾∗𝑛 = 𝑈∗(𝑡)            (9) 

in 

𝑀̅∗ = 𝜃𝑇𝑀̅𝜃, 𝐾∗ = 𝜃𝑇𝐾𝜃, 𝑈∗(𝑡) = 𝜃𝑇𝑃𝐹̅(𝑡) 

If the first m-order mode is taken to approximate the 

vibration of the original system, then m<n, the dynamic 

model under the generalized mode coordinates can be 

described as 

𝑀̅𝑚
∗
𝑛̈ + 𝐾𝑚

∗
𝑛 = 𝑈𝑚

∗(𝑡)         (10) 

The spatial rigid frame has a complicated structure and 

a high dimensionality. If the dynamic equation is used, 

the design of controller becomes difficult, the calculation 

amount is too large, and the time is too long, which are 

unfavorable for vibration control. Therefore, in this paper 

do modal truncation of the mathematical model in the 

modal space, that is, retain the low-frequency mode, that 

is, the first four-order mode, ignoring the high-frequency 

mode. The modal displacement and the modal velocity 

are combined into a state variable, and the model is 

transformed into a state space representation, and a 

generalized state space model of the spatial rigid frame 

structure is established [12]. 

Since the stiffness matrix and mass matrix of the rigid 

frame structure are time-invariant, the structural vibration 

control system belongs to the linear steady system, and 

the equation (7) is transformed into the state space. 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢               (11) 

where x = [x1 x2], in x1 = δ̅, x2 = ẋ1 

𝐴 = [
0 𝐼

−𝑀−1𝐾 0
]              (12) 

      𝐵 = [
0

𝑀−1𝑃
]               (13) 

𝐶 = 𝐼8×8 (Unit quality)          (14) 

It is known from MATLAB that (A, B) is controllable 

and (A, C) is considerable. 

In errors occur during the procession of mathematical 

modeling, and external factors can cause large parameter 

uncertainties. In the physical space model, the parameter 

uncertainties are mainly reflected in the error of the mass 

matrix, the stiffness matrix and the damping matrix, so 

they can be considered as uncertain. In the state space 

model, it mainly reflects the uncertainty of modal 

frequency, mode shape and modal damping ratio. These 

uncertainties have an impact on the stability and control 
performance of the control system. 

For linear time-invariant systems, when considering 

structural uncertainty, the equation will be transformed 

into the following form: 

𝑥̇ = (𝐴 + 𝛥𝐴)𝑥 + (𝐵 + 𝛥𝛣)𝑢
𝑦 = (𝐶 + 𝛥𝐶)𝑥

 

Among them, ΔA, ΔΒ, ΔC are the uncertainties of the 

structural parameters. For the space rigid frame structure 

in this paper, only the uncertainty caused by the modal 

frequency is considered. Thus, the uncertainty exists only 

in ΔA, so it is simplified. State space model: 

𝑥̇ = (𝐴 + 𝛥𝐴)𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥

 

For the structural model change caused by the 

uncertainty of structural parameters, verify the designed 

controller, that is, controller is designed by applying to 

the nominal model, and then consider the influence of 

modal frequency uncertainty to draw the closed-loop 

singular value of the uncertainty system. Whether the 

curve satisfies ‖TZW < 𝛾‖ to judge the robustness of the 

controller. The modal frequency uncertainty can be 

additive uncertainty or multiplicative uncertainty [13]. 

B. Design of a State Observer Based Robust Controller 

Consider the stability of the system for the 

uncertainties that exist in the system: for linear uncertain 

systems: 

{
𝑥̇(𝑡) = [𝐴 + ∆𝐴]𝑥(𝑡) + 𝐵𝑢(𝑡)

𝑦 = 𝐶𝑥(𝑡)
        (15) 
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where 𝑥(𝑡) ∈ 𝑅𝑛 is the state matrix of the system, 

𝑢(𝑡) ∈ 𝑅𝑚 is the control input, and A and B and C are 

the real constant matrices describing the system model, 

assuming that ∆A=EΣF. 

Define the following state observers: 

{
𝑥̇̂(𝑡) = 𝐴𝑥̂(𝑡) + 𝐵𝑢(𝑡) + 𝐿[𝑦(𝑡) − 𝐶𝑥̂(𝑡)]

𝑢(𝑡) = −𝐾𝑥̂(𝑡)
  (16) 

And can be gained, obtained 

𝑒(𝑡) = 𝑥(𝑡) − 𝑥̂(𝑡)            (17) 

Obtained by the above formula: 

𝑥̇(𝑡) = [𝐴 + 𝛥𝐴 − 𝐵𝐾]𝑥(𝑡) + 𝐵𝐾𝑒(𝑡)    (18) 

𝑒̇(𝑡) = 𝑥̇(𝑡) − 𝑧̇(𝑡) = (𝐴 − 𝐿𝐶)𝑒(𝑡) + 𝛥𝐴𝑥(𝑡)  (19) 

From the above formula can be obtained: 

{
𝑥̇(𝑡) = [𝐴 + 𝛥𝐴 − 𝐵𝐾]𝑥(𝑡) + 𝐵𝐾𝑒(𝑡)

𝑒̇(𝑡) = (𝐴 − 𝐿𝐶)𝑒(𝑡) + 𝛥𝐴𝑥(𝑡)
    (20) 

Lemma 1: L, E, F are suitable dimension matrices, and 

𝐹𝑇𝐹 ≤ 𝐼, I is a suitable dimension unit matrix, then there 

are α > 0, α ∈ R, so that the following inequality holds. 

𝐿𝐹𝐸 + (𝐿𝐹𝐸)𝑇 ≤ 𝛼−1𝐿𝐿𝑇 + 𝛼𝐸𝑇𝐸 

Theorem 1: For linear uncertain systems (15), there is 

linear feedback based on state observers, so that the 

sufficient condition for robust stability of closed-loop 

systems is that there are positive definite symmetric 

matrices 𝑋 > 0, 𝑃2 > 0 and matrices W, Z, K And the 

constant ε, which makes the following linear matrix 

inequality. 

[
 
 
 
 
 
𝑋𝐴𝑇 + 𝐴𝑋 − 𝐵𝑊 − 𝑊𝑇𝐵𝑇 𝐵𝐾 𝐸 𝑋𝐹𝑇 0

𝐾𝑇𝐵𝑇 𝐴𝑇𝑃2 − 𝐶𝑇𝑍𝑇 + 𝑃2𝐴 − 𝑍𝐶 0 0 𝑃2𝐸

𝐸𝑇 0 −𝜀𝐼 0 0

𝐹𝑋 0 0 −
1

2
𝜀−1𝐼 0

0 𝐸𝑇𝑃2 0 0 −𝜀𝐼]
 
 
 
 
 

< 0 

Proof: The following Lyapunov function is constructed 

for the closed-loop augmentation system (20). 

𝑉(𝑥(𝑡), 𝑡) = 𝑥𝑇(𝑡)𝑃1𝑥(𝑡) + 𝑒𝑇(𝑡)𝑃2𝑒(𝑡) 

The Lyapunov function defined above is derived for t 

𝑉̇ =
𝑥̇𝑇(𝑡)𝑃1𝑥(𝑡) + 𝑥𝑇(𝑡)𝑃1𝑥̇(𝑡) + 𝑒̇𝑇(𝑡)𝑃2𝑒(𝑡)𝑒

𝑇(𝑡)𝑃2𝑒̇(𝑡)  

= [(𝐴 + 𝛥𝐴 − 𝐵𝐾)𝑥(𝑡) + 𝐵𝐾𝑒(𝑡)]𝑇𝑃1𝑥(𝑡) +
𝑥𝑇(𝑡)𝑃1[(𝐴 + 𝛥𝐴 − 𝐵𝐾)𝑥(𝑡) + 𝐵𝐾𝑒(𝑡)] + [(𝐴 −
𝐿𝐶)𝑒(𝑡) + 𝛥𝐴𝑥(𝑡)]𝑇𝑃2𝑒(𝑡) + 𝑒𝑇(𝑡)𝑃2[(𝐴 − 𝐿𝐶)𝑒(𝑡) +
𝛥𝐴𝑥(𝑡)]  

= [𝐴𝑥(𝑡) + 𝛥𝐴𝑥(𝑡) − 𝐵𝐾𝑥(𝑡) + 𝐵𝐾𝑒(𝑡)]𝑇𝑃1𝑥(𝑡) +
𝑥𝑇(𝑡)𝑃1[𝐴𝑥(𝑡) + 𝛥𝐴𝑥(𝑡) − 𝐵𝐾𝑥(𝑡) + 𝐵𝐾𝑒(𝑡)] +
[(𝐴 − 𝐿𝐶)𝑒(𝑡) + 𝛥𝐴𝑥(𝑡)]𝑇𝑃2𝑒(𝑡) + 𝑒𝑇(𝑡)𝑃2[(𝐴 −
𝐿𝐶)𝑒(𝑡) + 𝛥𝐴𝑥(𝑡)]  

= 𝑥𝑇(𝑡)(𝐴 − 𝐵𝐾)𝑇𝑃1𝑥(𝑡) + 𝑥𝑇(𝑡)𝑃1(𝐴 − 𝐵𝐾)𝑥(𝑡) +
𝑥𝑇(𝑡)𝑃1𝐵𝐾𝑒(𝑡) + 𝑒𝑇(𝑡)(𝐵𝐾)𝑇𝑃1𝑥(𝑡) +
𝑥𝑇(𝑡)𝛥𝐴𝑇𝑃1𝑥(𝑡) + 𝑥𝑇(𝑡)𝑃1𝛥𝐴𝑥(𝑡) + 𝑒𝑇(𝑡)(𝐴 −
𝐿𝐶)𝑇𝑃2𝑒(𝑡) + 𝑥𝑇(𝑡)𝛥𝐴𝑇𝑃2𝑒(𝑡) + 𝑒𝑇(𝑡)𝑃2(𝐴 −
𝐿𝐶)𝑇𝑒(𝑡) + 𝑒𝑇(𝑡)𝑃2𝛥𝐴𝑥(𝑡)  

By Lemma 1 

𝑥𝑇(𝑡)(𝛥𝐴𝑇𝑃1 + 𝑃1𝛥𝐴)𝑥(𝑡)  

≤ 𝑥𝑇(𝑡)(𝜀−1𝑃1𝐸𝐸𝑇𝑃1 + 2𝜀𝐹𝑇𝐹)𝑥(𝑡)+𝑥𝑇(𝑡)𝑃1𝐵𝐾𝑒(𝑡)

    +𝑒𝑇(𝑡)(𝐵𝐾)𝑇𝑃1𝑥(𝑡) + 𝑒(𝑡)[(𝐴 − 𝐿𝐶)𝑇𝑃2 + 𝑃2(𝐴 − 𝐿𝐶)

    +𝜀−1𝑃2𝐸𝐸𝑇𝑃2]𝑒(𝑡)

= [
𝑥(𝑡)

𝑒(𝑡)
]
𝑇

𝛺 [
𝑥(𝑡)

𝑒(𝑡)
]

 

In Ω= 

[
(𝐴 − 𝐵𝐾)𝑇𝑃1 + 𝑃1(𝐴 − 𝐵𝐾) + 𝜀−1𝑃1𝐸𝐸𝑇𝑃1 + 2𝜀𝐹𝑇𝐹

(𝐵𝐾)𝑇𝑃1

 

𝑃1𝐵𝐾

(𝐴 − 𝐿𝐶)𝑇𝑃2 + 𝑃2(𝐴 − 𝐿𝐶) + 𝜀−1𝑃2𝐸𝐸𝑇𝑃2
] 

Since the sufficient condition for the asymptotic 

stability of the closed-loop system isV̇ < 0, it is only 

necessary to prove that Ω < 0. On the both sides of Ω, 

respectively, multiply and multiply diag(X, I) , let 

 X = P1
−1, W = KX, Z = P2L can be obtained: 

[
𝑋(𝐴 − 𝐵𝐾)𝑇 + (𝐴 − 𝐵𝐾)𝑋 + 𝜀−1𝐸𝐸𝑇 + 2𝜀𝑋𝐹𝑇𝐹

𝐾𝑇𝐵𝑇
 

𝐵𝐾
𝐴𝑇𝑃2 − 𝐶𝑇𝑍𝑇 + 𝑃2𝐴 − 𝑍𝐶 + 𝜀−1𝑃2𝐸𝐸𝑇𝑃2

] 

Applying schur to the above matrix: 

[
 
 
 
 
 
𝑋𝐴𝑇 + 𝐴𝑋 − 𝐵𝑊 − 𝑊𝑇𝐵𝑇 𝐵𝐾 𝐸 𝑋𝐹𝑇 0

𝐾𝑇𝐵𝑇 𝐴𝑇𝑃2 − 𝐶𝑇𝑍𝑇 + 𝑃2𝐴 − 𝑍𝐶 0 0 𝑃2𝐸

𝐸𝑇 0 −𝜀𝐼 0 0

𝐹𝑋 0 0 −
1

2
𝜀−1𝐼 0

0 𝐸𝑇𝑃2 0 0 −𝜀𝐼]
 
 
 
 
 

 

So prove the theorem 1. 

C. Horizontal Vibration Control Simulation of Boom 

Frame 

The boom test is performed on the controller obtained 

above. When the system is simulated, ∆A = EΣF  is 

taken. 

E = 0.01 ∗ I8×8 , Σ = I8×8 , F = 10 ∗ I8×8  

Limit all the degrees of freedom of the 7th and 8th 

nodes of the boom frame in the Fig. 1, and select the first 

4th mode to control. Using LMITOOL solution of 

MATLAB: Since t=-9.3618e-10, t < 0, LMI is feasible. 

So get from the above formula. 

𝐾 = 𝑊𝑋−1,𝐿 = 𝑍𝑃2
−1 

MATLAB solution 

K =  

[
493937.3 −191063.4 −1893346.5 −2096220.3

−1062099.2 −1021938.2 5596066.1 6499159.2
 

163020.6 −233587.7 63319.9 −40453.0
226411.2 256503.3 −255752.5 179451.2

]  

L = [
R1 R2

R3 R4
]  R1 = [

0.32 0 0 0
0.32 0 0

0.18 0
0.18

] 
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R2 = [

−1.41 0 0 0
−1.42 0 0

−1.98 0
−1.98

] 

R3 = [

−2.89 0 0 0
−2.89 0 0

−126.01 0
−126.76

] 

R4 = [

1.13 0 0 0
1.14 0 0

29.54 0
29.71

] 

Select the 6th and 9th nodes on the boom frame, and 

the corresponding nodes apply to the horizontal direction 

control force. Apply a momentary disturbance of 0.25m 

in the positive direction of the z-axis to the 1st and 14th 

nodes of the boom frame. Observe 1 Deformation in the 

horizontal direction of the 14-node to understand the 

horizontal deformation vibration of the entire boom 

frame. 

Figure 3. Displacement of Nodes 1 and 14 in the horizontal direction 

As shown in Fig. 3, the curve fluctuates greatly at the 

beginning. When it is acted by the controller, the curve 

tends to be stable gradually. The simulation results show 

that the designed state observer can stabilize the spray 

rod. 

VI. RESULT

In this paper, the finite element modeling of the 

common boom frame structure of the plant protection 

machine is carried out, and the problem of controlling the 

vibration deformation on the rigid frame structure is 

studied. The boom frame is regarded as the combination 

of beam elements. The finite element method is used to 

model the dynamics, and the obtained model is 

transformed into the modal space. The first 4 modes are 

used to suppress the vibration deformation of the spray 

booms in the horizontal direction.The robust stability 

problem is analyzed. Based on the linear matrix 

inequality method and the Lyapunov stability principle, 

the relevant criteria of the system stability are given and 

simulated. The effectiveness of the control method is 

demonstrated. 
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