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Abstract—Effectively detecting and removing inedible 

harvests before or after harvesting is important for many 

agri-workers. Recent studies have suggested diverse 

measures, including various robot arm-based machines for 

harvesting vegetables and pulling up weeds, using camera 

systems to detect relevant coordinates. Although some of 

these systems have included monitoring and identification 

tools for edible and inedible targets, their accuracy has not 

been sufficient for use. Thus, further improvements have 

incorporated computing into the process based on human 

feelings and commonsense-based thinking, which considers 

up-to-date technologies and determines how solutions reflect 

the experience of traditional agri-workers. Our focus is on 

Japanese small- to middle-sized farms. Thus, we developed a 

fine-tuning (transfer-learning)-based deep learning system 

that gathers field pictures and performs static visual data 

analyses using artificial intelligence (AI)-based computing. 

In this study, pictures included kiwi fruits, eggplants, and 

mini tomatoes in outdoor farmlands. We focused on several 

program-based applications with deep learning-based 

systems using several hidden layers. To align with this 

year’s technical trends, the data is presented concerning two 

patterns with different target layers: (1) all bonding layers 

with a revised pattern, and (2) some convolution layers with 

a visual geometry group (VGG) 16 and picture classifier 

created by convolutional neural network (CNN) revised 

pattern. Our results confirmed the utility of the fine-tuning 

methodologies, thus supporting other similar analyses in 

different academic research fields. In future, these results 

could assist the development of automatic agricultural 

harvesting systems and other high-tech agri-systems. 

 

Index Terms—picture classification, deep learning, fine-

tuning, Keras, Theano 

 

I. INTRODUCTION 

In recent years, agricultural researchers and workers 

(agri workers) have developed several automatic and 

mechanical techniques to improve the utility of 

harvesting robot-systems by enabling them to search for 

the color and size of vegetables and fruits based on visual 

data [1]-[4]. 
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These achievements in academic and business fields 

have already reached sufficient levels to utilize them in 

outer fields and inner farmlands. Additionally, 

researchers in the field of agricultural informatics and 

robotics have proposed various promising methods for 

improving these tasks. Existing visual analysis methods 

have focused mainly on vegetables, fruits, weeds, and 

farmers, including robotic farming systems in many ways 

[5]-[15], and other various targets [16], [17].  

However, past studies and systems have been 

insufficient for fine-tuning based methodologies; that is 

why new technologies continue to be developed. And, in 

this study, we aims to develop a visual data analysis 

system by deep-learning, not based on open huge image 

datasets on the Internet [17], [18], but using original 

pictures, which connects to our program using libraries, 

external files and programs. 

II. MATERIALS AND METHODS 

A. Field 

We focused on Japanese traditional small- to middle-

sized, non-trimmed outdoor farms to address requests 

from real farmers after our real hearing by oral. 

B. Target 

In this study, we used original pictures that we 

captured and aggregated in nonspecific outdoor 

farmlands. That is, we did not use available open picture 

datasets (e.g., sets in ImageNet 2012). First, we captured  

1) kiwi fruits (kiwi), n = 162 (training data = 81, 

validation data = 81); 

2) eggplants, n = 46 (training data = 23, validation data 

= 23); and 

3) mini tomatoes, n = 64 (training data = 32, validation 

data = 32).  

As shown in Fig. 1 and later in Table I, these amounts 

and weights were standardized video-analytically. Prior 

to the data collection, we consulted with agri-managers 

and workers because of the difficulties in handling 

dozens’ sample numbers in the farmlands. Sets of square 

pictures of the targets (these pictures were parts of the 
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data collection) were judged “edible” or “inedible” by 

experienced agri-workers (n = 3, their careers were over 

20 years). 

 

Figure 1. Example sets of square pictures of the targets judged by 
experienced agri-workers. 

C. Analysis 

 

Figure 2. Flow of the experiment. 

 

Figure 3. Classification of the pictures. 

This study selected an artificial intelligence (AI)-based 

deep learning method, however did not use any open 

datasets (e.g., databases in ImageNet) for the target or 

training data. In light of current academic trends and past 

results, our methodology is adequate in the agricultural 

informatics field. Fig. 2 shows the flow of the experiment, 

which comprised (1) obtaining pictures and movie data 

from the target area farmlands, (2) analyzing the data 

using our programs (the adequacies of functions have 

been confirmed before), and (3) calculating and 

comparing charts of the statistical information. In future, 

we will present the results to agricultural system 

developers, agri-workers, and agri-managers. We set six 

picture classes: (1) Kiwi-Edible, (2) Kiwi-Inedible, (3) 

Eggplant-Edible, (4) Eggplant-Inedible, (5) Mini tomato-

Edible, and (6) Mini tomato-Inedible, for Training Data 

(categorized by experienced agri-workers) and Validation 

Data (categorized by inexperienced agri-workers 

categorized) (Fig. 3). 

Considering similar past trials, we uniformed the 

picture sizes to 224×224 pixels [2]-[15]. However, the 

complexity of the Japanese traditional, non-trimmed 

farmlands made it difficult to take measurements, and 

differences in the responses between individuals impeded 

understanding of the data. 

In this study, aiming for increased accuracy, we 

performed a layer-oriented deep learning-based analysis. 

We used the latest Chainer framework and various 

peripheral programs (e.g., Anaconda), libraries, and 

packages.  

In recent years, diverse gradient methods have been 

proposed for deep learning of picture data (Stochastic 

Gradient Descent (SGD), Momentum SGD (MSGD), 

AdaGrad, RMSprop, AdaDelta, Adam, etc.). We chose 

SGD as the optimizer for the system because of its 

effectiveness against redundancy concerning executions 

using the training data. We used one of the most common 

parameter value sets (lr = 0.0001, momentum = 0.9).  

For the SGD’s and MSGD’s logics, we respectively 

iterate the w
t 
value in equations (1) and (2) as follows:  

w
t + 1

 = w
t – η ▽fn(w

t
)  

             = w
t – η (∂E(w

t
) / ∂w

t
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w
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t
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             = w
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t
) / ∂w
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) + α⊿w

t (2) 

where E is the error function, η is the learning function, 

and α is the parameter of the inertia term. In standard 

gradient methods, we can solve common problems that 

the solved data are likely to set to the local optimum by 

randomly selecting samples with updating w
t
 values. This 

has the advantage of quickly learning the redundancy of 

the training data.  

However, we must set the learning rate (coefficient) η 

arbitrarily, and we cannot change the settled η through 

the whole sequential process of error(s) minimization (for 

Chainer, η = 0.01 in default.). Thus, there are difficulties 

in choosing the most appropriate parameters according to 

the type of machine-learning. 

For the process, particularly the fine-tuning of agri-

pictures, we use the functions of Numpy, Blob, etc., and 

attempted to achieve a highly precise distinction rate 

using fewer pictures (presented in Table I) than are 

generally used in these (standard) technical fields 

(generally, over hundreds of pictures). 

Table I shows a set of items used for the Chainer 

framework-based analyses, which comprised multiple 

Obtain pictures 

and movie data 
from target 

area farmlands 

Analyze the 

data using 

original system  

Calculate and 

compare charts 
of the 

statistical 

information 

Pictures of edible targets  Pictures of inedible targets 
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layers. As shown in Fig. 4, the sequential processing was 

programmed in Python, and the ratios of the areas 

between the main targets and the whole pictures were 

calculated using accuracy-assessed original programs. 

For system development, we used Python 3 to code the 

main program systems, and Theano as the library for the 

machine learning in the background of Keras 2.0. Theano 

and TensorFlow sat behind Keras 2.0, which is a neural-

network library written in Python that we used to write 

the sample code. Additionally, we selected the visual 

geometry group (VGG) 16-model (known as VGG16) or 

picture classifier created by convolutional neural network 

(CNN); these are a commonly used, valid convolutional 

neural-network model.  

 

Figure 4. Steps of the main program for the trials.

After fine-tuning the model and executing machine 

learning, a user will be able to simply and quickly 

categorize objects concerning 1,000 category models, 

without requiring default installed pictures.  

In the case where past pictures are used for learning 

and these are quite different to current trials, these 

analyzed characteristic points and values cannot be used 

directly. A user typically needs considerable training data 

and long computational time for machine learning. 

However, there are various patterns of fine-tuning, and a 

user may consider how to change the layers of the 

machine learning. That is, a user can freeze (stabilize) 

arbitrary layers; the benefit is mainly the flexible 

controlling of the speed, accuracy, and other 

characteristics of the analyses. 

Considering this study as the first in a series, we 

compared the following methods: (1) changing all 

bonding layers (layers’ weight) and freezing other layers; 

and (2) executing learnings to change weights of some 

bonding layers (Fig. 5 and Fig. 6). For Fig. 5, we used the 

aforementioned classified captured pictures in the 

respectively named data folders presented in Fig. 3. We 

did not renew the VGG16 layer, but executed the learning 

for the attached new layers. 
 

Figure 5. The layers in the first method. (Changing all bonding layers). 
# The bold-enclosed area contains target layers for the learning. 

[Pre-processing] 

・Declaration of system's various path  

・Setting parameters concerning Keras, and the backend running program Theano 

・Importing VGG 16 (or CNN), and Image Data Generator 

・Declaration of the pictures' category numbers, images' size, and batches' size 

[Main function]  

・Setting the pictures' size, and these numbers into "inout_tensor" 

・Setting the base_model as VGG 16 (or CNN), and the parameters 

・Setting other variables 

・Compiling the layer model, and other small executions 

・Outputting analyzed data sumarry 

[Set TrainingDataGenerator as ImageDataGenerator] 

・Setting variables 

・Executing the setting TrainingDataGenerator as ImageDataGenerator 

[Set TestingDataGenerator as ImageDataGenerator] 

・Setting variables 

・Executing the setting TestingDataGenerator as ImageDataGenerator 

[Set items of TrainingDataGenerator] 

・Setting variables 
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Figure 6. The layers in the second method. (Changing weights of some 
bonding layers based on machine learning). # The bold-enclosed area 

contains target layers for the learning. 

Next, as presented in Fig. 6, we changed the area to be 

targeted for deep learning in the aforementioned layer 

model from “dense_1 to dense_2” into “block5_conv1 to 

dense_2.” As presented above, we performed fine-tuning, 

and changed only limited layers to support computational 

speed using 272 (81 (pieces) × 2 (sets), 23 × 2, 32 × 2) 

pictures, as presented in Table I, for the machine-leaning. 

The recognition accuracy was then calculated. Through 

the process, we contrasted the results for the following 

two cases since the function is used in diverse cases 

across scientific fields: (1) the case to utilize the existing 

ImageDataGenerator and (2) the case for turning off the 

ImageDataGenerator. 

III. RESULTS 

Fig. 7 and Fig. 8 illustrate these training accuracy and 

validation accuracy for the cases ImageDataGenerator 

OFF (Fig. 7) or ON (Fig. 8) concerning “Kiwi-Edible”. 

The provided are the closest graphs to medium graph-line 

data of them. Table I presents the statistical results 

considering past studies utilizing the Chainer framework 

[12], [18]. The items in the rows of “Validation 

Accuracy” are average values of the calculation time. The 

case in Fig. 6 (changing some bonding layers) needed 

about eight times more calculation time, however, had a 

higher average accuracy than the case in Fig. 5 (changing 

all bonding layers). 

 

Figure 7. Training accuracy and validation accuracy in the case 
ImageDataGenerator OFF for Kiwi-Edible, Keras, and VGG16. 

 

Figure 8. Training accuracy and validation accuracy in case 
ImageDataGenerator ON concerning Kiwi-Edible, Keras, and VGG16. 

TABLE I.  VALIDATION ACCURACY FROM 13 TRIALS 

Model (Case) 

Kiwi-Edible Eggplant-Edible Mini tomato-Edible 

Keras and 
CNN 

Keras and 
VGG16 

Keras and 
CNN 

Keras and 
VGG16 

Keras and 
CNN 

Keras and 
VGG16 

Number of Picture Data as  

(1) Training data and  
(2) Validation data  

(1) 81, (2) 81 (1) 23, (2) 23 (1) 32, (2) 32 

Epoch 100 100 100 100 100 100 100 100 100 100 100 100 

Fine-Tuning  OFF OFF ON ON OFF OFF ON ON OFF OFF ON ON 

Image Data Generator OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON 

Validation Accuracy (%) 61.1 63.9 72.5 75.9 55.5 57.9 58.1 59.9 68.2 72.0 75.4 76.7 

IV. DISCUSSION 

Table I presents the numerical features of the cases of 

the kiwi, eggplant, and mini-tomato datasets. 

In Fig. 7 and Fig. 8, the blue lines show the training 

case accuracy, and the red lines show the validation case 

accuracy. Comparing these graphs, the 

ImageDataGenerator ON case was slower to learn, 

however, ultimately had higher accuracy than 
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ImageDataGenerator OFF. In this study, we could not 

obtain statistically sufficient volumes of picture data, so 

the ideal graph-lines should increase further and quicker. 

For Fig. 7 and Fig. 8, if we increased the amount of data, 

the orange line could reach a higher level, indicating 

greater accuracy. 

For the data in Table I, we observed the limitation 

concerning the range of all values from 55.5% to 76.7%. 

For three harvests, the lowest-accuracy patterns were 

“Fine-tuning = OFF” and “ImageDataGenerator = OFF,” 

and the highest-accuracy patterns were “Fine-tuning = 

ON” and “ImageDataGenerator = ON.” For the 

“Eggplant-Edible” data, four numerical data concerning 

“Validation Accuracy” (55.5% – 59.9%) were the 

lowest, perhaps because the eggplant has the darkest 

(non- vivid) colors. By contrast, the “Mini tomato-

Edible” data showed the highest results. 

In this phase, it was difficult to determine whether the 

sets of tools are suitable for judging whether actual 

agricultural items are edible or inedible. Specifically, 

relating to the system, it is difficult to comment 

concerning the combination of Keras, CNN, VGG16, and 

ImageDataGenerator from only these results. However, 

obvious differences are evident in Fig. 7 and Fig. 8. 

V. CONCLUSION AND FUTURE TASKS 

In this study, we constructed and demonstrated fine-

tuning and deep learning-based visual data analysis for 

three harvests at agri-sites.  

We analyzed our original captured picture files 

automatically considering various future practical usages, 

and presented various timeline and numerical data of 

classification accuracy, with changing conditions related 

to CNN, VGG16, ImageDataGenerator, etc. 

Our future work will aim to provide further 

confirmation related to the variety of the detected targets 

and background conditions. Additionally, we may check 

the system durability, long-term performance, and other 

patterns or databases.  

In the long term, these results could be used for 

automatic systems to help both indoor and outdoor 

farmlands improve their agri-work skills. We hope the 

aforementioned promising methodologies will be widely 

applied to real working sites to promote the recruitment 

of workers into agricultural fields. 
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