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Abstract—We develop a monitoring and forewarning system 

to detect planthoppers in paddy fields. Our detection 

algorithm consists of two stages. At the first stage, we 

extract the main paddy in the middle of an image by some 

traditional image processing techniques. At the second stage, 

we use a convolutional neural network to detect 

planthoppers within the extracted region. Our detection 

model is revised from the Single Shot MultiBox Detector 

(SSD). The original SSD model usually misrecognizes 

reflected light as planthoppers since a lot of background 

information has been discarded in the max pooling layers of 

the SSD model. To solve this misrecognition problem, we 

propose a new kind of pooling-- Local Difference Pooling. 

This proposed method greatly improves the performance of 

planthopper detection to achieve 89.38% precision and 

91.93% recall. 

 

Index Terms—planthopper, detection, SSD, local difference 

pooling 

 

I. INTRODUCTION 

Planthoppers are a kind of rice pests that cause huge 

damage to the crops in several Asia countries. These 

pests may devastate crops in a short time and even carry 

some disease, causing the damage of paddy both 

morphologically and physiologically. Planthoppers are so 

small that it is difficult to observe them. Moreover, they 

reproduce extremely fast and spread quickly to a large 

area. If we do not take appropriate actions in time, they 

may cause damage in an explosive way. Although 

spraying pesticides can kill most planthoppers, it will also 

pollute the land, and the polluted rice will be harmful for 

human health. Therefore, it is urgent to develop a 

monitoring and forewarning system that is capable of 

detecting planthoppers in the paddy fields in time. With 

this system, farmers only need to spray pesticides when 

the number of planthoppers exceeds a pre-selected 

threshold. The reduced usage of pesticides would be 

helpful to human health.  
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Recently, many methods have been proposed to 

recognize rice planthoppers in paddy fields. Zou and 

Ding [1] proposed a recognition algorithm to achieve 

real-time identification, consisting of single-threshold 

segmentation and wavelet-based pest edge extraction. 

YAO Qing et al. [2] proposed a three-layer model to 

detect whiteback planthoppers. This model consists of 

Harr feature based AdaBoost classifier, HOG feature 

based SVM classifier, and threshold-based judgment. 

This method achieves an 85.2% detection rate and a 9.6% 

false detection rate. Sarin Watcharabutsarakham et al. [3] 

proposed a method to monitor brown planthoppers which 

combines an image classifier with a mobile application. 

The classifier is modeled as a support vector machine 

based on color and local texture features. This method 

achieves an 83% accuracy rate. Tsai et al. [4] proposed a 

simple model with the following steps: (1) find the region 

of interest, (2) do color analysis, and (3) recognize rice 

planthoppers with the decision-tree algorithm.  

However, those aforementioned methods have 

difficulty handling particular conditions, such as 

occlusion, lighting variations, and deformation. To deal 

with these problems, we will use a Deep Convolutional 

Neural Network (DCNN),  which can  extract high level 

features from the image to detect planthoppers. 

Recently, there are two main streams using CNN 

models for object detection. The first approach uses 

Region Proposal Network (RPN) (Fast R-CNN [5]; Faster 

R-CNN [6]) to find ROIs (Region Of Interest) and feed in 

region proposals one by one to the classification network. 

The second approach discards ROI generation and makes 

prediction on class and location at the same time, such as 

SSD [7] and YOLO [8]. The second approach is typically 

faster than the first approach since there is no need to 

wait for the preparation of ROIs.  

Comparing Faster R-CNN, SSD and YOLO with the 

same base network, the last two are ten times faster than 

Faster R-CNN. Besides, in terms of accuracy, SSD is 

better than the other two in Pascal VOC competition. 

Hence, we select SSD as our detection model and revise 

it properly to meet our requirements. For the base 

network, we use VGG-16 [9]. 
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The remainder of this paper is organized as follows. 

Section 2 introduces the source of our data and the 

methods we use in the experiments. Section 3 shows the 

results of our methods with different architectures and 

discusses some particular situations of our model. The 

last section draws the conclusion of this paper. 

II. MATERIALS AND METHODS 

A. Image Data 

This project is cooperated with Industrial Technology 

Research Institute (ITRI) and Taiwan Agricultural 

Research Institute. ITRI is responsible for setting up 

cameras in the paddy fields and collecting image data. 

Our dataset has 1152 training images and 50 testing 

images. Fig. 1 shows an example of the image data. 

 

Figure 1.  Example of image data. There are three different resolutions 
of images in the dataset: 3456x4608, 3672x4896, and 2592x4608 pixels 

(height x width). 

In the image data, the planthoppers’ height ranges from 

23 to 214 pixels, while its width ranges from 12 to 152 

pixels. The range is quite large due to the varying 

distance between the camera and the plant. Since 

planthoppers are relatively small in the image, we crop 

the image into smaller image patches before feeding them 

to the detection network. Moreover, our detection model 

is based on the SSD network, whose input size is fixed to 

be 300x300 pixels. Hence, we match the size of the 

image patches to this 300x300 size (as shown in Fig. 2). 

We also perform data augmentation to significantly 

increase the size of our dataset (as listed in Table I). The 

details about the preprocessing for training and testing 

images will be introduced in Section II.C and II.D. 

 

Figure 2.  Examples of patches cropped from the original image. Size: 

300 x 300 pixels. 

TABLE I.  THE SIZE OF OUR DATASET 

Dataset Number 

Training images 1152 

Testing images 50 

Cropped image patches 

(training) 

33346 

Cropped image patches 

(testing) 

32928 

B. Model 

The SSD network adds six extra layers to the end of 

the VGG-16 network. These layers decrease in size and 

the layers with smaller sizes are responsible for detecting 

larger objects in the original image. There are anchor 

boxes of different shapes and sizes in order to detect 

objects of different shapes. Choosing appropriate aspect 

ratios of anchor boxes may improve the accuracy of the 

model. To meet our requirements, we revise the original 

SSD model, which will be introduced in the following 

paragraph. Fig. 3 shows the architecture of the revised 

SSD model. 

The original SSD model can classify 21 classes. 

However, our dataset only includes two different classes 

(planthopper/non-planthopper). It is not necessary to use 

such a complicated model for binary classification. Hence, 

we reduce the number of filters to 1/4 of the original ones. 

Moreover, since planthoppers are typically small in the 

image, we remove the last two layers which are designed 

to detect larger areas in the image. 
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Figure 3.  Revised SSD model. 

Journal of Advanced Agricultural Technologies Vol. 6, No. 3, September 2019

©2019 Journal of Advanced Agricultural Technologies 181



To decide the aspect ratios of anchor boxes, we 

examine the shape of planthoppers in the whole dataset. 

Most planthoppers are thin and tall and their height-width 

ratio is around 2, as shown in Fig. 4. We use k-means 

clustering (with 3 clusters) to analyze the distribution of 

the planthopper’s height-width ratio and obtain the three 

cluster centers with the aspect ratio being 1.3, 2 and 2.75, 

respectively. In our model, the aspect ratios are set to 

these three values. 

 

Figure 4.  Histogram of the height-width ratio of planthoppers. Most of 

the planthoppers are thin and tall and their height-width ratio is around 2. 

Finally, we observe that the receptive fields of the 

predictive convolutional filters are actually smaller than 

their corresponding anchor sizes. Hence, we enlarge the 

filter size from 3x3 to 5x3. With the new size, the 

receptive field can contain more information within the 

anchor box. 

 
    (a) Light reflection                              (b) Blurred planthoppers 

Figure 5.  Light reflection and blurred planthoppers. 

C. Local Difference Pooling 

With SSD, the major challenge is that our model may 

sometimes misrecognize light reflection as planthoppers 

since blurred planthoppers and reflected light have 

similar features and may cause confusion in detection. On 

the contrary, humans can identify their differences by 

observing the surrounding environment of the objects. If 

an object locates on a green leaf or stem, it is more likely 

to be a planthopper; otherwise it may be a false alarm, as 

shown in Fig. 5. Typically the color difference between a 

planthopper and its background is larger than the color 

difference between a false alarm and its background. 

Based on this observation, the inclusion of background 

information could be a useful way to distinguish blurred 

planthoppers from light reflection. 

In the revised SSD model, we propose the Local 

Difference Pooling which calculates the local difference 

between the average value and the max value, as 

expressed in Equation (1) where α is set to 1/4. 

Local Difference Pooling=Average Pooling-α×Max pooling 

                            (1) 

In order to reduce feature map size, Max Pooling is 

commonly used in CNN models. However, since max 

pooling only keeps the largest value and discards the rest, 

background information is lost after Max Pooling. On the 

other hand, even though Average Pooling can retain the 

background information, it does not show the color 

variation in a small region. To meet our requirements, we 

propose the Local Difference Pooling which calculates 

the local difference between the average value and the 

max value. 
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Figure 6.  Illustration of average pooling, max pooling, and local 
difference pooling.  
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Figure 7.  Improved SSD structure with local difference pooling. Green blocks are the original SSD layers. Blue blocks are new layers utilizing 
Local Difference pooling. Feature maps are combined to make prediction. In the improved structure, both foreground and background information 

can affect the predictive results. 
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Fig. 6 shows an example of different pooling 

approaches. The value of Local Difference Pooling is 

high if the small region contains prominent color contrast. 

This method effectively retains the background 

information and enables our model to distinguish blurred 

planthoppers from light reflection. Fig. 7 shows the 

Improved SSD structure with Local Difference Pooling 

which utilizes both foreground and background 

information. 

 

Random crop Data 

augmentation
SSD modelImage Back

propagation
(a) Flow diagram of the training process 

Main Plant Locater Crop SSD modelImage Prediction
 

(b) Flow diagram of the testing process 

Figure 8.  Flow diagram. 

D. Training 

As mentioned in Section 2.1, the image data should be 

cropped into small patches (300 x 300 pixels) to match 

the input size of the SSD network. The preprocessing 

procedure will be explained in details in the following 

paragraphs. 

Fig. 8(a) shows the flow diagram of the training 

process. First, the image data are cropped into the size of 

350 x 350 or 512 x 512 pixels. These patches are cropped 

in an overlapping way with a small margin (Fig. 9). 

Hence, planthoppers that locate on a border line of one 

patch may appear in another patch. In our setting, a 

planthopper in an image patch will be treated as a 

positive sample if more than 70% of its body appears in 

the patch. This setting will be helpful for detecting 

planthoppers that are partially occluded by leaves or 

stems. Finally, the patches with no planthoppers are 

discarded because they largely increase the number of 

negative samples. 

 

Figure 9.  Image with overlapped patches. The red lines and black lines 

denote different patches, which are overlapped with a small margin. We 
only draw some of the patches for illustration.  

In the random crop module, patches are randomly 

cropped for data augmentation and then resized to 300 x 

300 pixels. For random cropping, there are some 

constraints: (1) the area of a planthopper should not be 

smaller than two thirds of its original size; (2) the height-

width ratio of a cropped box should range from 0.9 to 1.1; 

and (3) the cropped area should be larger than a half of 

the original area. In our system, we randomly generate a 

box, which satisfies the constraints (2) and (3), and 

randomly crop the patch. If the cropped patch violates the 

constraint (1), the patch is discarded and the system will 

do croping again.  

In the data augmentation module, we do some color 

transformation and horizontal flip to create more 

variations of the training samples. The color 

transformation process contains random changes of 

brightness, saturation, contrast, and hue. 

After the preprocessing process, these image patches 

are sent to the SSD network for training. The SSD 

network is trained by the error back-propagation 

algorithm with mini-batch of size 32. We choose Adam 

optimizer and set the learning rate to 0.001 initially. 

Learning rate is decreased every 2000 iterations with the 

decay rate 0.85. After about 30k iterations, the loss stops 

decaying and we add negative samples back to learn the 

features of non-planthopper. Finally, we finish the 

training at about 50k iterations. 

E. Main Plant Locator 

For testing, we only concern about planthoppers on the 

main plant. Hence, we identify the location of the main 

plant first and discard the remaining area. The main plant 

is cropped into patches of 300x300 pixels with slight 

overlapping and these patches are sent to the SSD 

network for testing. Fig. 8(b) shows the flow diagram of 

the testing process. In the following paragraphs, we 

introduce the identification of the main plant region. 

 

Figure 10.  The area for stem width estimation. The region is set to 
range from the 0.2 x height to 0.4 x height of the image. 
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Observing our testing data, the difference between a 

main plant and the background is quite obvious in the 

lower portion of the image, as colored in red in Fig. 10. 

Within the red region, we first estimate the stem width of 

the main plant. 

By examining each of the RGB channel in the red 

region, the green component is apparently higher than the 

blue component on the plant. On the contrary, the green 

component may be lower than the blue component in the 

background region. Hence, we calculate the division of 

the green component to the blue component of each pixel 

over the red region, as shown in Fig. 11(b). 

 

(a) 

 
(b) 

Figure 11.  (a) RGB image (b) The division of the green component to 
the blue component of each pixel. 

Next, we calculate the summation along the y axis of 

the G/B image, as shown in Fig. 12(a). Then moving 

average is applied to smooth the summation result. The 

smoothed curve is further normalized to range from 0 to 1, 

as shown in Fig. 12(b). The value is high when there is a 

plant and is low for the background. By setting a 

threshold, we can approximate the width of the stem. In 

our observation, it is appropriate to select 0.2 as the 

threshold. Next, the plant has a larger width on the upper 

portion of the plant. Hence, we approximate the width of 

the plant to be 1.5 times the width of the stem and Fig. 13 

demonstrates the final prediction of the main plant area, 

which is indicated by the dotted red line. 

 

(a) 

 
(b) 

 
(c) 

Figure 12.  Predict the width of the stem. (a) The result of summation 
along the y axis of Fig. 11(b). (b) After moving-average smoothing and 

normalization. (c) We set the threshold at 0.2 to approximate the width 
of the stem. 

 

Figure 13.  Illustration of the estimated main plant region. 

III. RESULTS 

After testing, it is considered a true positive if the 

prediction and the ground truth have their IOU value 

bigger  than  0.5.  It  is a  false  alarm  if the  prediction  is  
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wrong. It is a miss if a planthopper is not detected. The 

number of mistakes equal to the number of false alarms 

plus the number of miss. Here we use precision and recall 

to evaluate the performance of our algorithm. Precision is 

the number of true positives over the number of 

predictions. Recall is the number of true positives over 

the number of planthoppers in the image. 

In our test dataset, there are 785 planthoppers in total. 

After testing, the total number of hit (true positives), false 

alarms, miss, and mistakes are listed in Table II. We 

evaluate precision and recall of every single image, and 

obtain the average value respectively based on the entire 

test dataset.  

We compare different architectures in Table II, in 

which each architecture is revised from the previous one 

except the last one. In the baseline model, we detect 

planthoppers using the original SSD model without any 

modification. The false alarm is extremely high, as shown 

in Fig. 14. After analyzing the shape and size of 

planthoppers, we discard the last two layers of the SSD 

model (Model 2) and choose suitable aspect ratios of the 

anchors based on the k-means clustering result (Model 3). 

The false alarm rate and missing rate are reduced but the 

effect is not significant.  We reduce the number of filters 

to 1/4 of the original number (Model 4) to save the 

training time. It is reasonable that the false alarm rate 

reduces while the missing rate increases. 

On the other hand, it makes a dramatic improvement as 

we utilize the Local Difference Pooling (Model 5). The 

number of false alarms reduces from 177 to 72. Besides, 

as we enlarge the filter size from 3x3 to 5x3 (Model 6) to 

obtain our final model, our system can achieve the 

precision value of 89.38% and the recall value of 91.93%. 

Comparing Fig. 14 (the result of the baseline model) with 

Fig. 15 (the result of the final model), it can be observed 

that the final model can recognize almost every 

planthopper with only one false alarm. However, it may 

be doubted that the missing rate of the baseline model is 

lower than that of the final model. Actually, for the 

baseline model, it learns to detect not only planthoppers 

but also everything similar to planthoppers. Hence, it can 

certainly detect planthoppers with lower missing rate, but 

at the same time with an excessive false alarm rate. In 

comparison, our model has achieved almost 90% 

precision and recall with only a small number of mistakes. 

The bottom row of Table II shows the performance of 

our system if we train our model without data 

augmentation. In this case, the precision value drops 

significantly for the testing data. 

We have also evaluated our model without the use of 

the Main Plant Locater. As shown in Fig. 16, massive 

false alarms occur in the background. Since the purpose 

of our system is to estimate the number of planthoppers 

on the main plant, the use of the Main Plant Locater is 

preferred. 

TABLE II.  PERFORMANCE OF DIFFERENT ARCHITECTURES. EACH ARCHITECTURE IS REVISED FROM THE PREVIOUS ONE, EXCEPT MODEL 7. THE 

BASELINE MODEL DENOTES THE SSD MODEL WITHOUT ANY MODIFICATION. “TIME” DENOTES THE AVERAGE TIME TO TEST ONE IMAGE 

Model Model Description Hit  False alarm Miss Mistake Precision Recall Time(s) 

1 Baseline 730 212 55 267 76.18 93.55 5.43 

2 1 + Discard the last two layers 735 204 50 254 77.22 94.63 5.15 

3 2 + Choose suitable aspect ratios  739 191 46 237 78.29 94.18 5.07 

4 3 + Reduce the number of filters  718 177 67 244 79.29 92.01 4.57 

5 4 + Use Local Difference Pooling 686 72 99 171 89.97 87.00 5.26 

6 5 + Enlarge the filter size from 3x3 to 

5x3  

723 79 62 141 89.38 91.93 7.94 

7 Baseline Without data augmentation 694 1088 91 1179 37.22 87.91 5.43 

 

 

Figure 14.  The test result of the baseline model. Red boxes are the 

prediction results, and blue boxes denote the ground truth. A total of 9 
planthoppers are detected. There are 2 misses and 8 false alarms. 

 

Figure 15.  The test result of Model 6. Red boxes are the prediction 
results, and blue boxes denote the ground truth. A total of 10 

planthoppers are detected. There are only 1 miss and 1 false alarm. 
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Figure 16.  The test result of the baseline model but without the Main 
Plant Locater. Red boxes are the prediction results, and blue boxes 

denote the ground truth. Several false alarms occur in the background. 

IV. CONCLUSION 

In this paper, we propose a monitoring system to detect 

planthoppers in paddy fields. Our system consists of two 

main stages. At the first stage, we detect the location of 

the main plant and discard the background. At the second 

stage, we revise the original SSD model by proposing the 

use of Local Difference Pooling to properly retain the 

color contrast information between the foreground 

objects and the background. The simulation results 

demonstrate that the use of Local Difference Pooling 

does enable our model to better distinguish blurred 

planthoppers from light reflection. The new model 

dramatically improves our detection model to achieve the 

precision value of 89.38% and the recall value of 91.93%. 
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