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Abstract—Steinernema carpocapsae is a microscopic 

entomopathogenic nematode (EPN) that may be used as an 

alternative to chemical pesticide. This species creates a 

symbiotic relationship with the bacteria Xenorhabdus 

nematophila. This biological control agent has many 

advantages compared to chemical pesticides as it does not 

harm either the environment or humans. Steinernema 

carpocapsae is a vector for the bacteria to infect the targeted 

insect pest. The bacteria kills the host within 24-48 hours. 

This paper focuses on the mass production of beneficial 

nematodes using solid state fermentation. The purpose of 

the experiment was to find the optimum conditions to mass 

produce the nematode efficiently. Maximizing yield with the 

minimalized nutrients will increase the cost efficiency of 

production, making it a more affordable attractive 

alternative to harmful chemical pesticides.  

 

Index Terms—beneficial nematode, solid state fermentation, 

Steinernema carpocapsae, Xenorhabdus nematophila 

 

I. INTRODUCTION 

Steinernema carpocapsae are nematodes that evolved 

a symbiotic relationship with the bacteria, Xenorhabdus 

nematophila, which belongs to the family 

Enterobacteriaceae. The bacteria live inside the nematode, 

which serves as a vector for the bacteria into the insect 

host. In return, the bacteria kill the insect by secreting 

protein toxin(s) into the hemolymph and bioconverting 

the insect into nutritional components for both the 

nematode and the bacteria [1]. The secreted 

antimicrobials are speculated to be a defense mechanism 

used to ward off competing microbes [2]. S. carpocapsae 

has become a center of attention for bio-ag researchers 

because it is safe and can kill harmful insects within 24-

48 hours [3]. Steinernema carpocapsae “is a natural and 

effective alternative to chemical pesticides, and have no 

detrimental effect on non-target species” [4]. Steinernema 

carpocapsae is known to attack its host by “ambushing” 

migrating insects [5], [6]. The diversity of insects 

affected by the biological control agent is narrow 

compared to the diversity of those insects controlled by 

chemical pesticides. The symbiotic pair have low heat 
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tolerance and cannot survive the internal body heat of 

humans [7]. 

The bacteria life cycle has two phenotypes, Phase I and 

Phase II. Phase I bacteria are infective, whereas Phase II 

are non-infective cells [8]. Reports demonstrate that 

stressful conditions increase the production of stable 

Phase II cultures. Mechanisms which cause phase 

variation are yet to be identified [9]-[12]. Unlike 

culturing nematodes in suspension where pH control is 

possible, control of pH on solid state media after 

inoculation is not possible. Studies of pH effects on 

nematode culture will be important as this technology 

continues to advance. 

The purpose of this research was to mass produce the 

nematode using a solid state fermentation process. Media 

composition was modified to determine optimal growth 

conditions. The media formulation contained nutrient 

broth, beef extract, yeast extract, peptone, agar, olive oil, 

and canola oil. Oil was necessary as demonstrated in 

earlier studies [13]. The concentration of the media was 

modified to 0.5x, 1x, 1.5x, and 2x. The nematode 

inoculum concentrations were also varied. Reducing the 

production cost of the beneficial nematode is as important 

as having a high nematode final yield. Cheaper mass 

production of the beneficial nematode will facilitate their 

use as a replacement of agricultural chemical pesticides.    

II. MATERIALS AND METHODS 

A. Isolation of Xenorhabdus nematophila 

Galleria mellonella insect larvae were used to isolate 

the nematode symbiont X. nematophila [14]. Infected 

larva were dead and turned dark brown color after 24 

hours. The color change verified that the biocontrol agent 

killed the larvae. Bacterial isolation was performed by the 

method of Inman and Holmes [15]. Deceased insect 

larvae were sterilized by plunging them four times into 

isopropanol, followed by rinsing with sterilized water. 

Air-dried, sanitized larva were dissected to isolate X. 

nematophila from the hemolymph [13]. The hemolymph 

was transferred onto nutrient agar bromothymol blue 

tetrazolium chloride agar (NBTA) plates to differentiate 

Phase I from Phase II cells. Blue colonies indicate Phase I 

cells [15]. NBTA contained per liter: 8.0 g nutrient agar; 
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25 mg bromothymol blue; 40 mg 2,3,5-

triphenyltetrazolium chloride (TTC). Blue colonies were 

sub-cultured and streaked onto a 2xNutrient Broth 

(Carolina Biological, USA) media agar plate and 

incubated at 28ºC. The bacteria were periodically 

transferred onto fresh 2xNB plates throughout the study 

to preserve the culture.  

B. Sanitization of Steinernema carpocapsae  

Steinernema carpocapsae nematodes were obtained 

from Arbico Organics (Tucson, AZ. USA) and used 

throughout this study. The nematodes were sanitized as 

follows: Nematodes were gently shaken overnight in 

sterile tap water at 150 rpm and room temperature. To 

sanitize the nematodes, 0.125% Hyamine
®
 (Sigma) was 

added and incubated for 20 minutes on shaker [16]. The 

sanitized nematodes were transferred into 50 mL sterile 

tubes and centrifuged for 5 minutes at 500 rpm and the 

pellet was collected. The process was repeated 10-12 

times to remove dead bacteria from the supernatant. A 

sample was collected every 3 cycles and gram stained to 

check the presence of bacterial load.  

C. Preparation of Solid Media 

All glassware and equipment were washed thoroughly 

using de-ionized water and autoclaved to remove 

contamination. Fig. 1 shows the small, medium, and large 

glass plates used during this experiment. The surface 

areas for small, medium, and large glass plates were 

approximately 400 cm2, 500 cm2 and 700 cm2 

respectively, and fermentation media volumes were 400 

mL, 500 mL and 700 mL respectively. The depth of solid 

media bed was maintained at 1 cm in all glass plates. The 

fermentation media was composed of 1% beef extract, 

1% yeast extract, 2% peptone, 1% olive oil, 1% canola oil, 

agar and pH was adjusted to 7.5. The media was blended 

for five minutes to ensure all the ingredients were mixed 

well and then poured into the plates. The loaded plates 

were covered with aluminum foil and autoclaved at 

121°C for 30 minutes.  

  

 

Figure 1. Plates used during the experiment (large, medium, and small) 

D. Inoculation of Sanitized Steinernema carpocapsae  

The presence of a whitish lawn coating the media 

surface indicated bacterial growth. Phase I cells of X. 

nematophila were confirmed by gram staining. Surface 

sanitized S. carpocapsae were then aseptically introduced 

to the bacteria. The nematode inoculum concentrations 

were adjusted according to the experiments. The 

incubation period necessary to obtain the first generation 

growth cycle of nematodes was observed on day 13 at 

room temperature.  

E. Harvesting and Packing the Nematodes 

First generations of Steinernema carpocapsae were 

harvested from the plates. Harvesting was accomplished 

by adding sterile tap water on top of the solid media and 

washing the nematodes by gentle shaking. The nematodes 

were counted and centrifuged at 2500 rpm. The pellets 

were packed in 5mm open cell sponge material and stored 

at 4°C. 

F. Nematode Yield  

Nematode yield was determined using a gridded 

sedwick rafter counting cell® (Wildco) by serial dilution 

[17]. The final fold of nematodes was calculated as the 

ratio of harvest concentration to inoculum concentration. 

For example: 1.8 x10
7
 nematodes (yield)/ 5.0x10

5
 

nematodes (inoculum) = 36 folds  

III. RESULTS AND DISCUSSION  

A. Effect of Nematode Inoculum Concentration on Yield  

Fig. 2 shows that nematode inoculum concentrations 

increase or decrease the final nematode yield. Increasing 

nematode density will increase metabolic waste and 

competition for food. To illustrate: inoculating 250 

nematodes per cm
2
, resulted in 110 folds. Microscopic 

examination showed the adults were larger, contained 

more eggs and yielded higher production of nematodes. 

When the nematode inoculum was doubled to 550 

nematodes per cm
2
, the final folds decreased by 50%. 

Johnson et al. (2016) reported 25 fold yield of the 

beneficial nematode Heterorhabditis bacteriophora by 

inoculating 900 nematodes per cm
2 
of solid media surface 

which correlates closely with this report [17]. Upadhyay 

et al. (2015) reported 19 folds of the entomopathogenic 

nematode Heterorhabditis bacteriophora using liquid 

culture fermentation technology [18]. However, in terms 

of absolute production, solid state fermentation yielded 

110 maximum fold, but relatively small final yield. 

Liquid medium technology has the advantage of 

nematodes using three dimensions, whereas solid state 

fermentation is limited to two dimensions (the upper 

surface of the media.) 

 

Figure 2. Nematode yield as a function of nematode density 

Few nematodes were observed within the solid media 

matrix. Higher nematode density, less availability of 

nutrients and more waste metabolites may have repressed 
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the nematodes’ ability to produce eggs. From a mass 

production perspective, fold is not always the preferred 

measurement of success. Another approach to 

commercialization might be to shorten the ‘recovery 

period’ of IJs [19], [20]. The exit from the 

developmentally arrested third juvenile stage (IJ3) is 

called “recovery.” Time of recovery may be important to 

achieve an economically feasible production process. 

Nematode recovery is dependent on various factors 

including bacterial phase variant, media formulation and 

bacterial density [21], [22]. Finally, nematode and 

bacterial density are certainly factors affecting final 

nematode yield [21], [22]. 

B. Effect of Fermentation Media Concentration on 

Nematode Yield 

In this experiment, approximately 1500 nematodes/cm
2
 

were inoculated onto 700 cm
2
 plates containing different 

concentrations of fermentation media. Results are 

reported in Fig. 3. Final yield is related to nutrient 

concentration. Doubling media concentration resulted in 

decreased yield. 

 

 

Figure 3. Nematode yield of Steinernema carpocapsae per gram of 
media ingredients/Liter 

The 0.5x concentration (20 g/L) of original 

fermentation media concentration was observed to 

maximize final yield per gram amount of media used. 

Johnson et al. reported (2016) 5.5x10
5
 H. bacteriophora 

IJs per gram of nutrients using same nutrient ingredients 

of this study [17]. Whereas, Somwong and Petcharat 

(2012) achieved 3.04x10
5
, 2.45x10

5
 and 2.98x10

5
 

IJs/gram Steinernema carpocapsae using different media 

ingredients including dog food, powdered fish and 

silkwarm pupa respectively in their study [23]. Fresh 

chicken was used as media by Tabassum and Shahina 

(2004) who reported 7.5x10
4
 IJs/gram H. indica spp [14]. 

Both lipid quality and quantity affect the final nematode 

yield [24]. Hence, 1% olive oil and 1% canola oil were 

used in growth media throughout this study. Optimization 

of lipid concentration can be conducted to obtain 

maximum yield of nematodes in future studies. Nematode 

production can be commercialized by optimizing culture 

conditions, inoculum size, and incubation period as well 

as by verifying media elements and concentrations. 

To many researchers, beneficial nematodes 

Heterorhabditis bacteriophora and Steinernema 

carpocapsae in vitro mass production on a large scale is 

challenging and cumbersome due to various obstacles 

[25]. The factors responsible for making nematode mass 

production difficult are: (a) phase shifting of the bacterial 

symbiont; (b) concentrations of inoculum 

(bacterial/nematode); (c) fermentation parameters pH, 

temperature, oxygen concentration, etc. (d) aseptic 

handling; (e) low percentages of nematode copulation. 

Contamination is also a challenge in mass production of 

nematodes. The advantage of growing X. nematophila 

prior to the nematode inoculation on solid media is the 

increase of secreted antimicrobial compounds, thereby 

preventing contamination [26]. Success in nematode mass 

production requires growing the bacterial symbiont 

within the media prior to nematode inoculation [27]. 

Nematode yield is dependent on the concentration and 

composition of media components [28]. Yoo et al. 

reported that media solution containing high sources of 

mono-unsaturated fatty acids and few saturated fatty 

acids favor optimal growth and development of 

nematodes. Yoo et al. developed a media with the 

mixture of olive and canola oil for the growth of 

Heterorhabditis bacteriophora. High lipid concentration 

promotes long term food supply. However the bacteria 

have limited ability to convert mono-unsaturated fatty 

acids into usable energy [24]. In the fermentation media, 

peptone was used as a principal source of organic 

nitrogen and yeast/beef extracts provided amino acids, 

peptides, vitamins and carbohydrates to support growth 

[28]. 

IV. CONCLUSION 

This study provides valuable guidance on 

implementing a solid state fermentation technology for 

mass production of S. carpocapsae. The research 

demonstrates principles to achieve highest yield of 

nematodes. As nematode inoculum concentration 

increases, the nematode final fold decreases, though 

nematode final yield increases. Finally, nematodes as a 

biological control agent are important because insects 

build resistance toward chemical pesticides. Not only is 

the bio-control agent safe for the environment and 

humans, but it does not harm beneficial insects. It is 

concluded that increasing the nutrient concentration did 

not benefit nematode mass production. Lowering the 

nutrients may help to decrease production cost. Future 

solid media studies for making production cheaper may 

focus on the use of natural raw material. 
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