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Abstract—The microbial lipid was interested to be an 

alternative feedstock of biodiesel production. The lipid 

producing condition of oleaginous yeast Psuedozyma sp. was 

optimized. The response surface methodology (RSM) was 

applied with central composite design (CCD) in this study. 

The experiment results showed that a second-order 

polynomial regression equation was achieved with good 

coefficient of determination in analysis of variance. The 

validation tests were performed and the experimented 

results were not significant different to the predicted value, 

thus confirming the reliability of empirical model in 

describing lipid production. Moreover, the fatty acid 

compositions were investigated. The results revealed that 

the accumulated lipid mainly consisted of 85% in C16:C18 

fatty acids. In addition, yeast biodiesel properties were 

predicted and also provided a satisfactory property. It was 

suggested that lipid of Psuedozyma sp. was suitable to be an 

alternative feedstock for biodiesel manufacturing.  

  

Index Terms—oleaginous yeast, microbial biodiesel, 

response surface methodology, biodiesel property. 

 

I. INTRODUCTION 

The diminishing of fossil fuels present highly effect 

with oil price in long term due to the increasing cost of 

exploring and extracting petroleum fuel [1]. The exhaust 

gases from petroleum oil also impact with environment 

pollution. Biodiesel has attracted attention as a renewable 

energy and environmentally friendly fuel because it can 

decrease the emission of sulfur, carbon monoxide, smoke 

and also hydrocarbon compounds during the combustion 

process of diesel engines [2], [3].  

Biodiesel can be produced by tranesterification of 

triacylglycerols (TAGs) from plant oil or renewable 

biomass with short chain alcohol especially methanol. 

TAGs will be transformed to fatty acid methyl esters 

(FAMEs) and glycerol as a main product and by-product, 

respectively [4]. However, the cost of biodiesel is high 

due to the cost of the raw material (70-75% of total cost). 

An inexpensive raw material for biodiesel making could 

decrease the total production cost [5]. Microbial lipids 
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that are produced by oleaginous microorganisms 

including microalgae, bacteria, fungi and yeasts are 

attracted interesting as promising potential feedstock for 

biodiesel production due to their similar fatty acid 

compositions to those of vegetable oils [6]. Moreover, 

microbial lipid production is not depended on weather 

and arable land when compared with the production of 

vegetable oils [7]. 

At present, oleaginous yeasts are applied to use as lipid 

producer for biodiesel production due to the growth and 

lipid production rate of yeast are higher than microalgae. 

Yeast does not require sunlight for photosynthesis. In 

addition, the cultivation of yeast can be operated with 

conventional bioreactor. Several kinds of inexpensive raw 

materials such as cellulosic material and agro-industrial 

waste can be applied as the raw materials for lipid 

production from oleaginous yeast [8], [9]. 

The conventional technique to optimize factors of 

process is one parameter variable at a time and keeping 

other remaining parameters constant. This technique also 

takes more time to experiment and has poor efficiency for 

optimizing a lot of factors [10]. This approach lacks the 

absoluteness to predict response variable under un-

experimented trials of independent variables. In addition, 

the interaction amongst these variables is not investigated 

[11], it does not depict the complete effects of the 

parameters on the process, and might lead to incorrect 

conclusion. In order to overcome this problem, 

optimization studies can be carried out using response 

surface methodology (RSM) [12].  

The objective of this work was to optimize the level of 

three important variables (glucose, (NH4)2SO4, and 

KH2PO4) for lipid production by shaken cultures of an 

oleaginous yeast strain Psudozyma sp. using RSM 

designed with central composite design (CCD). 

II. MATERIALS AND METHODS 

A. Microorganism and Inoculum Preparation 

Psudozyma sp. in this work was screened from pomelo 

skin and long-term kept in 75% of glycerol at -80°C. 

Firstly, Psudozyma sp. was activated by cultivation in 
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yeast extract-malt extract medium (YM) with shaking 

rate 150 rpm at 30°C for 24 h. Subsequently, 2.5 mL of 

activated culture was inoculated to 50 mL seed medium 

containing (in g/L): glucose 20, (NH4)2SO4 5, KH2PO4 1, 

MgSO4·7H2O 0.5, and yeast extract 0.5 and incubated 

under similar conditions for 20 h. 

B. Lipid Production 

Five milliliter of seed was transferred into 500 mL 

Erlenmeyer flask containing 95 mL of the lipid 

production medium containing (in g/L): MgSO4·7H2O 

1.5, Na2HPO4 2.0, and yeast extract, 1.0 while glucose 

(𝑥1) , (NH4)2SO4 (𝑥2) , and KH2PO4 (𝑥3)  concentration 

were varied to five levels as per the design of the 

experiment in Table I. The batch fermentation was 

carried out at 150 rpm and 30°C. 

TABLE I.  LEVEL OF THE FACTOR TESTED IN CCD 

Factor 
Symbol 

code 

Level of factors 

-1.682 -1 0 1 1.683 

glucose (g/L) (𝑥1) 20.0 40.3 70.0 99.7 120.0 

(NH4)2SO4 (g/L) (𝑥2) 0.5 1.4 2.8 4.1 5.0 

KH2PO4 (g/L) (𝑥3) 0 1.4 3.5 5.6 7.0 

C. Optimization by Response Surface Methodology 

A CCD of RSM was operated to optimize the three 

important factors (glucose, (NH4)2SO4 , and KH2PO4) for 

enhancing lipid production efficiency of Psudozyma sp. 

The three independent factors were studied at five levels 

(-α, -1, 0, 1, α) (Table II). A total of 19 experiments were 

conducted. All factors were taken at a central code value, 

which was considered as zero. The minimum and 

maximum ranges of the factors were used. The biomass 

concentration, lipid concentration, lipid productivity, and 

lipid content were noted as response values (y), and each 

trial was the average of the triplicate.  

D. Statistical Analysis and Modeling 

The data obtained from RSM on lipid productivity 

were subjected analysis of variance (ANOVA). The 

experimental results of RSM were fitted via the response 

surface regression procedure, using the following second-

order polynomial equation (1): 
 

𝑦 = 𝛽0 +  ∑ 𝛽𝑖𝑥𝑖 +  ∑ 𝛽𝑖𝑖 𝑥𝑖
2 +  ∑ 𝛽𝑖𝑗 𝑥𝑖𝑥𝑗   (1)

    

where y is the predicted response, xi and xj are 

independent factors, βo is the intercept, βi is the linear 

coefficient, βii is the quadratic coefficient and βij is the 

interaction coefficient. However, in this study, the 

independent variables were coded as 𝑥1, 𝑥2, and 𝑥3. Thus, 

the second order polynomial equation can be presented as 

follows: 

𝑦 = 𝛽0 +  𝛽1𝑥1 +  𝛽2𝑥2 + 𝛽3𝑥3 +  𝛽11𝑥1
2 + 𝛽22𝑥2

2 +

𝛽33𝑥3
2 + 𝛽12𝑥1𝑥2 + 𝛽13𝑥1𝑥3 + 𝛽23𝑥2𝑥3

   (2) 

 

Design-Expert, Version 7.0 trial version (STAT-EASE 

Inc., Minneapolis, USA) was used for the experimental 

design and statistical analysis of the experimental data. 

The ANOVA was used to estimate the statistical 

parameter. The Fisher’s test was used to evaluate the 

statistical significant of the model equation and the model 

term. The quality of model fitting of the second-order 

polynomial equation was determined via the coefficient 

of determination (R
2
). The fitted polynomial equation was 

presented in the form of contour plots to present the 

relationship between the responses and the experimental 

levels of each of the variables. The optimum level of each 

variable was expressed to explore the maximum response. 

TABLE II.  DESIGN AND RESPONSE OF THE CCD 

Run 𝑥1 𝑥2 𝑥3 
Responses 

𝑦1 𝑦2 𝑦3 𝑦4 

1 -1 -1 -1 8.58 3.97 0.79 46.21 

2 1 -1 -1 9.66 4.36 0.87 45.13 

3 -1 1 -1 9.48 4.55 0.91 47.94 

4 1 1 -1 10.44 5.00 1.00 47.85 

5 -1 -1 1 10.26 3.85 0.77 37.52 

6 1 -1 1 10.82 4.82 0.96 44.50 

7 -1 1 1 8.54 3.83 0.77 44.79 

8 1 1 1 12.86 5.17 1.03 40.20 

9 -1.682 0 0 6.96 2.74 0.55 39.30 

10 1.682 0 0 12.02 5.56 1.11 46.26 

11 0 -1.682 0 7.92 3.73 0.75 47.10 

12 0 1.682 0 12.34 4.66 0.93 37.72 

13 0 0 -1.682 6.64 4.12 0.82 61.97 

14 0 0 1.682 11.84 5.26 1.05 44.38 

15 0 0 0 8.22 3.49 0.70 42.46 

16 0 0 0 8.46 3.64 0.73 42.97 

17 0 0 0 8.64 3.75 0.75 43.35 

18 0 0 0 8.04 3.45 0.69 42.85 

19 0 0 0 8.74 3.75 0.74 42.51 

E. Analytical Method 

Culture medium was centrifuged at 10,000 rpm for 5 

min. The supernatant was separated and kept at -20°C for 

glucose analysis. The biomass was cleaned with water 

and centrifuged twice. Then, the washed cells were dried 

at 60°C until weight was constant (usually after 24 h). 

The biomass was determined gravimetrically [13]. 

The total lipids within the cell were extracted with a 

mixture of chloroform and methanol according to 

modified Bligh and Dyer method [14]. Lipid content was 

expressed as gram lipid per gram dry biomass. The fatty 

acid compositions were determined by gas 

chromatography (GC) in fatty acid methyl esters (FAMEs) 

form.  

F. Prediction of Cetane Number, Density, Kinematic, 

Viscosity, and Higher Heating Value of Biodiesel 

from Yeast 

Cetane number, density, kinematic viscosity and 

higher heating value were calculated from the mass 

fraction of individual fatty acids using Equation of 

Reference [15]. 

III. RESULTS AND DISCUSSION 
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A. Optimization of Three Independent Variable Using 

Response Surface Methodology 

The experimental runs and results for the CCD were 

shown in Table II. The 19 runs in a single block were 

used to study the effects of three factors on four response 

variables. For all combinations examined, biomass 

concentration ranged from 6.96 g/L to 12.34 g/L, lipid 

concentration varied from 2.74 g/L to 5.56 g/L, lipid 

productivity varied from 0.55 g/(L day) to 1.11 g/(L day), 

and lipid content differed from 37.52% to 61.97%. 

TABLE III.  ANALYSIS OF VARIANCE (ANOVA) FOR THE PARAMETERS 

OF RESPONSE SURFACE METHODOLOGY FITTED TO QUADRATIC MODEL 

Coefficient   Responses 

 𝑦1 𝑦2 𝑦3 𝑦4 

𝛽0 8.41b 3.60a 0.72a 42.90b 

𝛽1 1.13a 0.58a 0.12a 0.95c 

𝛽2 0.69b 0.23b 0.045b -0.61c 

𝛽3 0.96b 0.13c 0.025c -3.64a 

𝛽12 0.46c 0.054c 0.011c -1.32c 

𝛽13 0.36c 0.18c 0.037c 0.45c 

𝛽23 -0.17c -0.11c -0.022c -0.18c 

𝛽11 0.46c 0.20c 0.041c -0.45c 

𝛽22 0.69b 0.22c 0.044c -0.58c 

𝛽33 0.37c 0.39a 0.079a 3.22a 

R2 0.81 0.88 0.88 0.77 
 

Response: 𝑦1= biomass (g/L); 𝑦2 = lipid (g/L); 𝑦3 = lipid productivity 

(g/L day); 𝑦4 (% lipid content) = (
𝑦2

𝑦1
) × 100  

aHighly significant (P<0.01). 
bSignificant (P<0.05). 
cNot significant (P>0.05). 

 

The application of response surface methodology 

yielded the following regression equation models which 

are empirical relationships between the biomass 

concentration, lipid concentration, lipid productivity, and 

cellular lipid content values and the test variables in 

coded units. The relation among the variables (as coded 

values) glucose(𝑥1), (NH4)2SO4 (𝑥2), and KH2PO4 (𝑥3), 

were fitted by second-order polynomial of equations (1) 

and (2). The values of coefficient and regression models 

were presented in Table III. The regression models 

accurately described the experimental data, which 

indicated correlation among the three variables of lipid 

production process that affected the four response 

variables as discussed above. These were supported by 

the values of correlation coefficients of R
2
, 0.81, 0.88, 

0.88, and 0.77 for biomass concentration, lipid 

concentration, lipid productivity, and lipid content, 

respectively. These R
2
 values suggested that the empirical 

models well represent the correlation between the 

experimental results and the theoretical values predicted 

by the model equation.  

As shown in Fig. 1(A) to 1(C), it was observed that the 

response changed with glucose concentration and 

(NH4)2SO4 concentration. Glucose concentration of about 

100 g/L provided the maximum biomass concentration, 

lipid concentration, and lipid productivity at a given 

ammonium sulfate concentration. The reason would be 

that carbon source played the role as an energy generation 

and cellular biosynthesis [16]. Under optimal 

concentration of glucose, cell growth helps to enhance the 

accumulation of lipid in oleaginous yeast. Therefore, 

glucose is a key substrate to oleaginous yeast growth and 

lipid production. Moreover, it has been reported that 

nitrogen effected with the metabolism of protein 

formation. So it was identified as one of the important 

factors that induced the lipid production [10]. However, 

lipid productivity was also related with both of biomass 

and lipid concentration. 
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Figure 1.  Contour plot diagrams for biomass (A), lipid (B), lipid 
productivity (C), and lipid content (D), plotted as a function of the 

significant variable; glucose (𝑥1), (NH4)2SO4 (𝑥2), and KH2PO4 (𝑥3). 

The effects of KH2PO4 concentration and glucose 

concentration on lipid content were shown in Figure 1(D). 

The result presented negative effect of KH2PO4 

concentration on lipid content. It was indicated that the 

decreasing of KH2PO4 could increase lipid content of 

Psuedozyma sp. According to the literature, phosphorus 

limitation increased lipid production [17]. When 

oleaginous yeasts grew in the presence of excess glucose, 

cellular adenosine monophosphate (AMP) level dropped 

significantly due to the activation of AMP deaminase 

[18]. As the isocitrate dehydrogenases in mitochondria of 

oleaginous species were allosterically activated by AMP, 

a decreasing of AMP level led to building up citrate, 

which crossed mitochondrial membrane into the cytosol 

to fuel lipid accumulation. The phosphate exhaustion 

induced an AMP to release inorganic phosphate for other 

cellular processes. Thus, phosphorus limitation reduced 

isocitrate dehydrogenase activity in mitochondria due to 

depletion of the allosteric activator, AMP. 

B. Validation of the Model 

The validation of the statistical model and regression 

equation were conducted by taking of 99.73 g/L glucose, 

4.09 g/L of (NH4)2SO4, and 1.42 g/L of KH2PO4. Under 

these optimized conditions, the predicted response and 

the observed experimental value were shown in Table IV. 

These results confirmed that predicted value and 

experimented value were not significant different at α = 

0.05. It was suggested that the statistical method of RSM 

was well applied to optimize the cultivation variable and 

study the effects of the test variables on lipid production. 

C. Fatty acid Composition of Crude Lipid 

The fatty acid compositions of crude lipids that were 

produced from Psudozyma sp. under optimum condition 

were shown in Table V. The results revealed that crude 

lipids of Psudozyma sp. mainly consisted of 85.0% in 

C16:C18 fatty acid approximately. The crude lipid was 

composed with 47.66% oleic acid, 18.67% palmitic acid, 

11.40% linoleic acid, 4.34% palmitoleic acid and 2.93% 

stearic acid. These fatty acids were similar with fatty acid 

of oleaginous yeast strain (Lipomyces starkeyi and 

Rhodosporidium toruloides) and vegetable oils (jatropha 

and plam) which have been reported in biodiesel 

production. In a previous research, it is well known that 

fatty acid compositions influence the quality of biodiesel. 

Reference [19] reported that the suitable fatty acid 

compositions for biodiesel production are palmitic acid, 

stearic acid, oleic acid, linoleic acid and linolenic acid. 

Moreover, these fatty acids were identified as the most 

important fatty acids contained in biodiesel [20]. It was 

indicated that lipid produced by Psudozyma sp. has great 

potential as a feedstock for biodiesel production. 

TABLE IV.  DESIGN AND RESPONSE OF THE CCD 

Parameter 
Value 

Predicted Experimented* 

Biomass concentration (g/L)  10.85 11.39 ± 0.11ns 

Lipid concentration (g/L) 5.17 5.48 ± 0.07ns 

Lipid productivity (g/(L day)) 1.03 1.10 ± 0.01ns 

Lipid content (%) 47.69 48.10 ± 0.33ns 

*Data are means ± standard deviation from triplicate experiments. 
nsNot significant at α = 0.05. 

TABLE V.  RELATIVE FATTY ACID 

Fatty acid 

 (%) 
Sources of lipid 

 
Psuedozyma 

sp. 

L. 

starkeyia 

R. 

toruloidesb 

Jatrophac Palmd 

C16:0 18.67  36.50 34.3 20.16 44.3 

C16:1 4.34 3.6 1.90 1.32 - 

C18:0 2.93 5.40 4.80 7.22 4.3 

C18:1 47.66 52.80 46.20 39.77 39.3 

C18:2 11.40 1.20 7.80 31.53 10.0 
aRef. [21], bRef. [22], cRef. [23], and dRef. [24]. 

 

D. Biodiesel Properties Prediction 

The determination of some of the biodiesel quality 

properties can be an expensive and sophistical process 

[25]. In order to reduce costs and analysis time, biodiesel 

properties were estimated numerically by using empirical 

correlation [15]. The predicted properties of biodiesel 

from yeast were shown in Table VI. It was found that 

cetane number (CN) of biodiesel of Psuedozyma sp. was 

higher than biodiesel from jatropha. Although, this CN 

value was lower than palm biodiesel. However, this value 

met both the standard value in ASTM and EN. The CN 

value is a dimensionless number for diesel and is 

associated with ignition delay time, i.e., the time between 

fuel injection and the beginning of ignition. The shorter 

the ignition time, higher is the cetane number [25]. In 

addition, the density (DN) and kinematic viscosity (KV) 

were in standard range. The DN and KV values have a 

direct effect on the atomization process during 

combustion. The higher heating value (HHV) of yeast 

biodiesel was slightly lower than value of jatropha and 

palm. HHV also known as the gross calorific value or 

gross energy is the amount of heat released during the 

combustion of one gram of fuel. Although, the HHV was 

not required in standard, this property was usually applied 
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to determine the energy content of fuels and thereby their 

efficiency [15].   

TABLE VI.  BIODIESEL PROPERTIES 

Properties Biodiesel ASTM 

D6751 

EN 

14214  Yeast* Jatropha Palm 

CN 56.48 55.7 61.9 min 47 min 51 

DN (g/cm3) 0.88 ND ND - 0.86-0.90 

KV (mm2/s) 3.83 4.75 4.61 1.9-6.0 3.5-5.0 

HHV (Mj/kg) 37.78 40.7 40.6 - - 

*Psuedozyma sp. 
CN, cetane number; DN, density; HHV, higher heating value; KV, 

kinematic viscosity; IV, iodine values. 

ND = No data found in literature 

IV. CONCLUSION 

The lipid producing condition of oleaginous yeast, 

Psuedozyma sp., was optimized in laboratory scale. The 

relationship between lipid production efficiency and 

cultivation process was investigated using RSM operated 

with CCD. The second-order polynomial regression 

equation provided a good coefficient of determination. 

The predicted model of lipid production was very close to 

the experimented values. Moreover, fatty acid 

compositions under optimum condition were similar with 

vegetable oils. It was suggested that it was suitable for 

using as a raw material for biodiesel production.  

Furthermore, the predicted biodiesel properties of yeast 

also reached in range of biodiesel standard. It was 

demonstrated that lipid produced from Psuedozyma sp. 

was appropriate to be an alternative feedstock for 

biodiesel production with offering good biodiesel 

properties. 
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